计算机科学与探索
計算機科學與探索
계산궤과학여탐색
JOURNAL OF FRONTIERS OF COMPUTER SCIENCE & TECHNOLOGY
2015年
8期
1010-1017
,共8页
布谷鸟搜索算法%反方向视角%二项交叉%函数优化问题
佈穀鳥搜索算法%反方嚮視角%二項交扠%函數優化問題
포곡조수색산법%반방향시각%이항교차%함수우화문제
cuckoo search algorithm%reverse direction angle%binomial crossover%function optimization problems
布谷鸟搜索算法是一种新兴的自然仿生优化技术,其借用Lévy Flights随机走动和Biased随机走动搜索新的解。在Lévy Flights随机走动中,所有个体以当前种群获得的最优解为导向进行搜索,这容易导致种群趋同于该最优解。针对此问题,引入反方向视角使种群基于一定概率反向搜索,以避免趋同于当前最优解,并提出带反方向视角和二项式交叉的布谷鸟搜索算法。在提出的算法中,借用二项交叉操作以提高Biased随机走动的搜索能力。与标准的布谷鸟搜索算法对比,实验结果说明提出的策略能够有效地改善布谷鸟搜索算法求解连续函数优化问题的收敛速度和解的质量。与其他改进的布谷鸟搜索算法以及其他进化算法对比,实验结果说明提出的算法在求解连续函数优化问题上具有一定的竞争力。
佈穀鳥搜索算法是一種新興的自然倣生優化技術,其藉用Lévy Flights隨機走動和Biased隨機走動搜索新的解。在Lévy Flights隨機走動中,所有箇體以噹前種群穫得的最優解為導嚮進行搜索,這容易導緻種群趨同于該最優解。針對此問題,引入反方嚮視角使種群基于一定概率反嚮搜索,以避免趨同于噹前最優解,併提齣帶反方嚮視角和二項式交扠的佈穀鳥搜索算法。在提齣的算法中,藉用二項交扠操作以提高Biased隨機走動的搜索能力。與標準的佈穀鳥搜索算法對比,實驗結果說明提齣的策略能夠有效地改善佈穀鳥搜索算法求解連續函數優化問題的收斂速度和解的質量。與其他改進的佈穀鳥搜索算法以及其他進化算法對比,實驗結果說明提齣的算法在求解連續函數優化問題上具有一定的競爭力。
포곡조수색산법시일충신흥적자연방생우화기술,기차용Lévy Flights수궤주동화Biased수궤주동수색신적해。재Lévy Flights수궤주동중,소유개체이당전충군획득적최우해위도향진행수색,저용역도치충군추동우해최우해。침대차문제,인입반방향시각사충군기우일정개솔반향수색,이피면추동우당전최우해,병제출대반방향시각화이항식교차적포곡조수색산법。재제출적산법중,차용이항교차조작이제고Biased수궤주동적수색능력。여표준적포곡조수색산법대비,실험결과설명제출적책략능구유효지개선포곡조수색산법구해련속함수우화문제적수렴속도화해적질량。여기타개진적포곡조수색산법이급기타진화산법대비,실험결과설명제출적산법재구해련속함수우화문제상구유일정적경쟁력。
Cuckoo search algorithm is a new nature-inspired optimization technique, which uses Lévy Flights random walk and Biased random walk to search new solutions iteratively. In Lévy Flights random walk, all individuals search new solutions around the best solution obtained so far. This may easy make the population converge to the best one. To avoid converging to the current optimal solution, this paper uses the reverse direction angle strategy to search new solutions probably, and proposes a cuckoo search algorithm with reverse direction angle and binomial crossover, called RBCS. In RBCS, a binomial crossover strategy is employed to enhance the search ability of Biased random walk. Compared with the standard cuckoo search algorithm, the experimental results show that the proposed strategies can improve the convergence speed and the solution quality of the algorithm for the continuous function optimization problems effectively. Compared with other improved cuckoo search algorithms and other evolutionary algorithms, the experimental results reveal that the proposed algorithm is competitive for the continuous function optimization problems.