化工学报
化工學報
화공학보
JOURNAL OF CHEMICAL INDUSY AND ENGINEERING (CHINA)
2015年
8期
3225-3232
,共8页
俞坚%Pradeep MUNASINGHE%康世民
俞堅%Pradeep MUNASINGHE%康世民
유견%Pradeep MUNASINGHE%강세민
绿色化工%生物反应器%二氧化碳%微生物固碳%生物基产物
綠色化工%生物反應器%二氧化碳%微生物固碳%生物基產物
록색화공%생물반응기%이양화탄%미생물고탄%생물기산물
green refinery%bioreactor%carbon dioxide%microbial CO2 fixation%bio-based products
化石资源为人类提供了不可或缺的化学品、材料以及燃料,但也造成了大量二氧化碳排放。生物质是可以生产低碳化工产品的可再生资源,但要占用有限的可耕地资源。提出了直接以二氧化碳、水和太阳能为原料的绿色化工精炼。采用光电板收集太阳能并转化为电能,电能通过膜式水电解池产生氢气,氢气通入新型生物反应器并在自养菌的作用下把二氧化碳还原为聚三羟基丁酸酯(PHB)。此新型生物反应器解决了因气体溶解性低而影响传质速度的关键技术,微生物干重产出达0.18 g·L?1·h?1,其中PHB质量分数约50%。PHB不仅是优良的可生物降解塑料,也是可用于生产 C3~C4有机低分子和芳香烃的平台化合物。在磷酸催化作用下,PHB 可转化为与汽油相当热值和元素组成的C4~C16燃料油。分离PHB后的细菌生物质残渣可水热分解获得生物油和富氮水相产物。此生物油具有比植物生物油更高的热值,而水相产物可作为营养物用于培养微生物。
化石資源為人類提供瞭不可或缺的化學品、材料以及燃料,但也造成瞭大量二氧化碳排放。生物質是可以生產低碳化工產品的可再生資源,但要佔用有限的可耕地資源。提齣瞭直接以二氧化碳、水和太暘能為原料的綠色化工精煉。採用光電闆收集太暘能併轉化為電能,電能通過膜式水電解池產生氫氣,氫氣通入新型生物反應器併在自養菌的作用下把二氧化碳還原為聚三羥基丁痠酯(PHB)。此新型生物反應器解決瞭因氣體溶解性低而影響傳質速度的關鍵技術,微生物榦重產齣達0.18 g·L?1·h?1,其中PHB質量分數約50%。PHB不僅是優良的可生物降解塑料,也是可用于生產 C3~C4有機低分子和芳香烴的平檯化閤物。在燐痠催化作用下,PHB 可轉化為與汽油相噹熱值和元素組成的C4~C16燃料油。分離PHB後的細菌生物質殘渣可水熱分解穫得生物油和富氮水相產物。此生物油具有比植物生物油更高的熱值,而水相產物可作為營養物用于培養微生物。
화석자원위인류제공료불가혹결적화학품、재료이급연료,단야조성료대량이양화탄배방。생물질시가이생산저탄화공산품적가재생자원,단요점용유한적가경지자원。제출료직접이이양화탄、수화태양능위원료적록색화공정련。채용광전판수집태양능병전화위전능,전능통과막식수전해지산생경기,경기통입신형생물반응기병재자양균적작용하파이양화탄환원위취삼간기정산지(PHB)。차신형생물반응기해결료인기체용해성저이영향전질속도적관건기술,미생물간중산출체0.18 g·L?1·h?1,기중PHB질량분수약50%。PHB불부시우량적가생물강해소료,야시가용우생산 C3~C4유궤저분자화방향경적평태화합물。재린산최화작용하,PHB 가전화위여기유상당열치화원소조성적C4~C16연료유。분리PHB후적세균생물질잔사가수열분해획득생물유화부담수상산물。차생물유구유비식물생물유경고적열치,이수상산물가작위영양물용우배양미생물。
Refining and reforming of fossil feedstock produces indispensable materials, chemicals and fuels, but releasing a substantial amount of carbon dioxide (CO2). Bio-refineries of renewable biomass produce bio-based products of low carbon footprint. The biomass feedstock originates from CO2, water and sunlight, but relies on limited natural resources including arable land. This paper illustrates a green refinery that directly uses CO2, water and solar energy as the feedstock. A laboratory facility was set up and operated for verification, including a photovoltaic assembly, a membrane water electrolyzer, and a novel bioreactor in which an autotrophic hydrogen- oxidizing bacterium fixed CO2. Hydrogen was the only source of reducing agents and biological energy in micro-bial CO2 fixation, and obtained from water electrolysis with solar electricity. The reduced carbon was stored in bacterial biomass (CH1.74O0.46N0.19) and polyhydroxybutyrate (PHB, C4H6O2). PHB is a thermoplastic that can find a variety of applications because of its genuine biodegradability and similar material properties to that of polypropylene. It is also a platform material from which C3—C4 chemicals and aromatic compounds can be derived. Under catalysis of phosphoric acid, PHB was reformed into a gasoline-like transportation fuel. In addition, the residual bacterial mass can be also liquefied under thermal hydrolysis conditions and separated into a hydrophobic bio-oil and hydrophilic nutrient-rich hydrolysates. The former has a higher heating value than bio-oils from lignocellulose, and the latter can be reused in the microbial CO2 fixation as nutrients. A bioreactor of high mass transfer rate is the key to the technology because of the very low solubility of the gaseous substrates in the aqueous solution. A novel bioreactor was tested, exhibiting a high mass transfer rate even at a low gas feeding rate. The dry cell mass productivity reached 0.18 g·L?1·h?1 and the PHB content was about 50% (mass).