化工学报
化工學報
화공학보
JOURNAL OF CHEMICAL INDUSY AND ENGINEERING (CHINA)
2015年
8期
3177-3182
,共6页
张睿%吴元欣%何云蔚%艾常春
張睿%吳元訢%何雲蔚%艾常春
장예%오원흔%하운위%애상춘
流变相反应%合成%Li3PO4%掺杂%Li(Ni0.5Co0.2Mn0.3)O2%正极材料%电化学性能
流變相反應%閤成%Li3PO4%摻雜%Li(Ni0.5Co0.2Mn0.3)O2%正極材料%電化學性能
류변상반응%합성%Li3PO4%참잡%Li(Ni0.5Co0.2Mn0.3)O2%정겁재료%전화학성능
rheological phase reaction%synthesized%Li3PO4%dope%Li(Ni0.5Co0.2Mn0.3)O2%cathode materials%electrochemical performance
采用氢氧化物共沉淀法制备了锂离子电池正极材料前驱体(Ni0.5Co0.2Mn0.3)(OH)2,并用流变相反应法合成了Li3PO4掺杂的Li(Ni0.5Co0.2Mn0.3)O2锂离子电池正极材料。运用X射线粉末衍射和恒电流充放电对产物进行了结构和电化学性能的表征,结果表明Li3PO4掺杂的Li(Ni0.5Co0.2Mn0.3)O2具有标准的层状α-NaFeO2结构,样品为1μm左右的片状一次颗粒聚集而成的类球形二次颗粒。掺杂1%(质量分数)Li3PO4的 Li(Ni0.5Co0.2Mn0.3)O2锂离子电池在0.1C的倍率下首次放电比容量达到188.6 mA·h·g?1(2.2~4.6 Vvs Li+/Li),30次循环后容量保持率为92.9%。循环伏安、交流阻抗测试表明Li3PO4的掺杂可减少充放电过程中电解液和电极之间的电荷传递电阻和锂离子扩散电阻,减小极化作用,从而提升了Li(Ni0.5Co0.2Mn0.3)O2材料的电化学性能。
採用氫氧化物共沉澱法製備瞭鋰離子電池正極材料前驅體(Ni0.5Co0.2Mn0.3)(OH)2,併用流變相反應法閤成瞭Li3PO4摻雜的Li(Ni0.5Co0.2Mn0.3)O2鋰離子電池正極材料。運用X射線粉末衍射和恆電流充放電對產物進行瞭結構和電化學性能的錶徵,結果錶明Li3PO4摻雜的Li(Ni0.5Co0.2Mn0.3)O2具有標準的層狀α-NaFeO2結構,樣品為1μm左右的片狀一次顆粒聚集而成的類毬形二次顆粒。摻雜1%(質量分數)Li3PO4的 Li(Ni0.5Co0.2Mn0.3)O2鋰離子電池在0.1C的倍率下首次放電比容量達到188.6 mA·h·g?1(2.2~4.6 Vvs Li+/Li),30次循環後容量保持率為92.9%。循環伏安、交流阻抗測試錶明Li3PO4的摻雜可減少充放電過程中電解液和電極之間的電荷傳遞電阻和鋰離子擴散電阻,減小極化作用,從而提升瞭Li(Ni0.5Co0.2Mn0.3)O2材料的電化學性能。
채용경양화물공침정법제비료리리자전지정겁재료전구체(Ni0.5Co0.2Mn0.3)(OH)2,병용류변상반응법합성료Li3PO4참잡적Li(Ni0.5Co0.2Mn0.3)O2리리자전지정겁재료。운용X사선분말연사화항전류충방전대산물진행료결구화전화학성능적표정,결과표명Li3PO4참잡적Li(Ni0.5Co0.2Mn0.3)O2구유표준적층상α-NaFeO2결구,양품위1μm좌우적편상일차과립취집이성적류구형이차과립。참잡1%(질량분수)Li3PO4적 Li(Ni0.5Co0.2Mn0.3)O2리리자전지재0.1C적배솔하수차방전비용량체도188.6 mA·h·g?1(2.2~4.6 Vvs Li+/Li),30차순배후용량보지솔위92.9%。순배복안、교류조항측시표명Li3PO4적참잡가감소충방전과정중전해액화전겁지간적전하전체전조화리리자확산전조,감소겁화작용,종이제승료Li(Ni0.5Co0.2Mn0.3)O2재료적전화학성능。
LiNixCoyMnzO2 (0<x<1, 0<y<1, 0<z<1) has become prosperous materials for the next generation of rechargeable lithium ion battery due to the synergistic effect of the three elements and their higher discharge voltage platform and charge-discharge capacity, but the cycle stability still need to be improved. The Ni0.5Co0.2Mn0.3(OH)2precursor was synthesized by using the method of hydroxide co-precipitation and the lithium phosphate doped Li(Ni0.5Co0.2Mn0.3)O2powders prepared by rheological phase reaction. The crystal structure and electrochemical performance of Li3PO4 doped Li(Ni0.5Co0.2Mn0.3)O2powders were measured by X-ray diffraction (XRD), energy dispersive X-ray spectroscopy (EDS), galvanostatic charge-discharge, cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). The result indicated that Li(Ni0.5Co0.2Mn0.3)O2doped with Li3PO4powders maintained the laminated structure ofα-type-NaFeO2, and the spherical powders were agglomerated with primary particles around 1μm. The initial discharge capacity of Li(Ni0.5Co0.2Mn0.3)O2powders doped with 1% (mass) Li3PO4 was 188.6 mA·h·g?1 (2.2—4.6 Vvs Li+/Li), and maintained 92.9% after 30 cycles at 0.1C. Moreover, CV results showed that oxidation and reduction potential of Li(Ni0.5Co0.2Mn0.3)O2 powders doped with 1% Li3PO4 were 3.98 and 3.64 V, the polarization of the sample was 0.34 V. The EIS tests showed that the charge transfer resistance and Warburg resistance of Li(Ni0.5Co0.2Mn0.3)O2powders doped with 1% Li3PO4 were 36.7 and 0.08661?. So that, Li3PO4 components can reduce the charge transfer resistance and Li+ diffusion resistance between electrode and electrolyte, and decrease the effect of polarization, thus promote the electrochemical performance of Li(Ni0.5Co0.2Mn0.3)O2.