化工学报
化工學報
화공학보
JOURNAL OF CHEMICAL INDUSY AND ENGINEERING (CHINA)
2015年
8期
2968-2975
,共8页
尚建平%吴承洋%赵玲%孙伟振%袁渭康
尚建平%吳承洋%趙玲%孫偉振%袁渭康
상건평%오승양%조령%손위진%원위강
连续实验%模拟计算%二氧化碳%对二甲苯
連續實驗%模擬計算%二氧化碳%對二甲苯
련속실험%모의계산%이양화탄%대이갑분
carbon dioxide promoting oxidation%p-xylene%continuous experiment%simulation
利用连续实验装置考察了气相CO2浓度和反应温度对PX氧化反应的影响,并通过反应器建模对连续实验过程进行了模拟计算。研究结果表明,当气相CO2浓度介于40%~60%时,CO2能显著提高反应器出口PX转化率以及主产物收率,并且可以降低液相中主要杂质的含量;温度高于192℃后对反应器出口指标的影响比低温时明显。本文建立的全混流反应器模型能够预测气相CO2含量以及温度等不同反应条件下氧化反应器出口的PX转化率、主产物收率以及液相主要杂质随停留时间的变化。相关研究结果可为当前工业 PX 氧化过程效率提高以及节能降耗提供新的思路。
利用連續實驗裝置攷察瞭氣相CO2濃度和反應溫度對PX氧化反應的影響,併通過反應器建模對連續實驗過程進行瞭模擬計算。研究結果錶明,噹氣相CO2濃度介于40%~60%時,CO2能顯著提高反應器齣口PX轉化率以及主產物收率,併且可以降低液相中主要雜質的含量;溫度高于192℃後對反應器齣口指標的影響比低溫時明顯。本文建立的全混流反應器模型能夠預測氣相CO2含量以及溫度等不同反應條件下氧化反應器齣口的PX轉化率、主產物收率以及液相主要雜質隨停留時間的變化。相關研究結果可為噹前工業 PX 氧化過程效率提高以及節能降耗提供新的思路。
이용련속실험장치고찰료기상CO2농도화반응온도대PX양화반응적영향,병통과반응기건모대련속실험과정진행료모의계산。연구결과표명,당기상CO2농도개우40%~60%시,CO2능현저제고반응기출구PX전화솔이급주산물수솔,병차가이강저액상중주요잡질적함량;온도고우192℃후대반응기출구지표적영향비저온시명현。본문건립적전혼류반응기모형능구예측기상CO2함량이급온도등불동반응조건하양화반응기출구적PX전화솔、주산물수솔이급액상주요잡질수정류시간적변화。상관연구결과가위당전공업 PX 양화과정효솔제고이급절능강모제공신적사로。
This article focuses on the study of the promoting influence of CO2 on the liquid phase oxidation of p-xylene (PX) under industrial reaction conditions. Using a continuous experimental setup, the influences of gas-phase CO2 content and temperature on PX oxidation were investigated, and the processes were simulated by means of reactor modeling. It was found that CO2 could significantly increase the PX conversion and the yield of the primary product in the reactor outlet and reduce the content of the main impurities in liquid phase, when the CO2 concentration is between 40%—60%. When temperatures are higher than 192℃, the effect of temperature on the reactor outlet index is noticeably higher than that at lower temperatures. The mixed-flow reactor model successfully predicted the main index changes of reactor outlet with the residence time at different CO2 contents and temperatures, such as the PX conversion, yield of the primary product, and the contents of major impurities in the liquid phase. Hopefully, the results of this work could provide new ideas for enhancing efficiency and energy saving of current industrial PX oxidation processes.