化工学报
化工學報
화공학보
JOURNAL OF CHEMICAL INDUSY AND ENGINEERING (CHINA)
2015年
8期
2903-2910
,共8页
陈功%卢滇楠%吴建中%刘铮
陳功%盧滇楠%吳建中%劉錚
진공%로전남%오건중%류쟁
碳酸酐酶%CO2%扩散%水化层%吸附位点
碳痠酐酶%CO2%擴散%水化層%吸附位點
탄산항매%CO2%확산%수화층%흡부위점
carbonic anhydrase%carbon dioxide%diffusion%hydration layer%adsorption sites
气相中酶分子表面的水化层对其催化行为具有显著的影响。本文采用全原子分子动力学模拟方法考察了气相体系碳酸酐酶表面的水化层对酶结构以及CO2在酶分子中扩散行为的影响。首先展现了水分子在酶分子及其活性中心周围的分布,研究了水化层厚度对于酶结构以及CO2扩散速率的影响;发现最有利于CO2扩散进入酶分子的水化层厚度为0.7 nm。确认了碳酸酐酶内CO2的吸附位点,通过对其开合状态统计,显示出碳酸酐酶中CO2扩散通道中的瓶颈位置。上述结果对设计和优化碳酸酐酶催化气相体系中CO2的吸附和转化提供了依据和启示。
氣相中酶分子錶麵的水化層對其催化行為具有顯著的影響。本文採用全原子分子動力學模擬方法攷察瞭氣相體繫碳痠酐酶錶麵的水化層對酶結構以及CO2在酶分子中擴散行為的影響。首先展現瞭水分子在酶分子及其活性中心週圍的分佈,研究瞭水化層厚度對于酶結構以及CO2擴散速率的影響;髮現最有利于CO2擴散進入酶分子的水化層厚度為0.7 nm。確認瞭碳痠酐酶內CO2的吸附位點,通過對其開閤狀態統計,顯示齣碳痠酐酶中CO2擴散通道中的瓶頸位置。上述結果對設計和優化碳痠酐酶催化氣相體繫中CO2的吸附和轉化提供瞭依據和啟示。
기상중매분자표면적수화층대기최화행위구유현저적영향。본문채용전원자분자동역학모의방법고찰료기상체계탄산항매표면적수화층대매결구이급CO2재매분자중확산행위적영향。수선전현료수분자재매분자급기활성중심주위적분포,연구료수화층후도대우매결구이급CO2확산속솔적영향;발현최유리우CO2확산진입매분자적수화층후도위0.7 nm。학인료탄산항매내CO2적흡부위점,통과대기개합상태통계,현시출탄산항매중CO2확산통도중적병경위치。상술결과대설계화우화탄산항매최화기상체계중CO2적흡부화전화제공료의거화계시。
The hydration layer of the enzyme in the bulk gas phase has great effects on its catalytic performance. Molecular dynamics (MD) simulations at all-atom level was applied to investigate the effects of the hydration layer thickness on the diffusion of carbon dioxide molecules into the active site of a carbonic anhydrase enzyme from a bulk gas phase. Based on the distribution of water molecules surrounding the carbonic anhydrase enzyme, the effects of the hydration layer thickness on the protein structure and CO2 transport from the bulk gas phase to the protein active site was studied. The simulation results suggested an optimal hydration layer thickness of 0.7 nm for CO2 diffusion. The CO2 adsorption sites were identified, which compose of the diffusion channel inside the carbonic anhydrase. The MD simulation revealed the open states of these adsorption sites, which may be useful to identify the bottleneck position of the diffusion channel. The molecular insight is helpful for design and optimization of carbonic anhydrase, enabling more efficient CO2 adsorption and conversion.