信息网络安全
信息網絡安全
신식망락안전
NETINFO SECURITY
2015年
8期
20-25
,共6页
入侵检测%平衡二叉决策树%支持向量机%物联网安全
入侵檢測%平衡二扠決策樹%支持嚮量機%物聯網安全
입침검측%평형이차결책수%지지향량궤%물련망안전
intrusion detection%balanced binary decision tree%support vector machines%IoT security
物联网是继计算机、互联网和移动通信之后的又一次信息产业革命。目前,物联网已经被正式列为国家重点发展的战略性新兴产业之一,其应用范围几乎覆盖了各行各业。物联网中存在的网络入侵等安全问题日趋突出,在大数据背景下,文章提出一种适用于物联网环境的入侵检测模型。该模型把物联网中的入侵检测分为数据预处理、特征提取和数据分类3部分。数据预处理主要解决数据的归一化和冗余数据等问题;特征提取的主要目标是降维,以减少数据分类的时间;数据分类中引入平衡二叉决策树支持向量机(SVM)多分类算法,选用BDT-SVM算法对网络入侵数据进行训练和检测。实验表明,选用BDT-SVM多分类算法可以提高入侵检测系统的精度;通过特征提取,在保证精度的前提下,减少了检测时间。
物聯網是繼計算機、互聯網和移動通信之後的又一次信息產業革命。目前,物聯網已經被正式列為國傢重點髮展的戰略性新興產業之一,其應用範圍幾乎覆蓋瞭各行各業。物聯網中存在的網絡入侵等安全問題日趨突齣,在大數據揹景下,文章提齣一種適用于物聯網環境的入侵檢測模型。該模型把物聯網中的入侵檢測分為數據預處理、特徵提取和數據分類3部分。數據預處理主要解決數據的歸一化和冗餘數據等問題;特徵提取的主要目標是降維,以減少數據分類的時間;數據分類中引入平衡二扠決策樹支持嚮量機(SVM)多分類算法,選用BDT-SVM算法對網絡入侵數據進行訓練和檢測。實驗錶明,選用BDT-SVM多分類算法可以提高入侵檢測繫統的精度;通過特徵提取,在保證精度的前提下,減少瞭檢測時間。
물련망시계계산궤、호련망화이동통신지후적우일차신식산업혁명。목전,물련망이경피정식렬위국가중점발전적전략성신흥산업지일,기응용범위궤호복개료각행각업。물련망중존재적망락입침등안전문제일추돌출,재대수거배경하,문장제출일충괄용우물련망배경적입침검측모형。해모형파물련망중적입침검측분위수거예처리、특정제취화수거분류3부분。수거예처리주요해결수거적귀일화화용여수거등문제;특정제취적주요목표시강유,이감소수거분류적시간;수거분류중인입평형이차결책수지지향량궤(SVM)다분류산법,선용BDT-SVM산법대망락입침수거진행훈련화검측。실험표명,선용BDT-SVM다분류산법가이제고입침검측계통적정도;통과특정제취,재보증정도적전제하,감소료검측시간。
The Internet of Things (IoT) is another information industry revolution after the computer, the Internet and the mobile communications. At present, IoT has been ofifcially listed as one of the national strategic emerging industries, and its application range covers almost all areas. Secure problems such as network intrusion in the IoT art prominent increasingly. In the big data context, this paper proposes an intrusion detection model that is suitable for IoT which divides the intrusion detection procedure into three parts, which are data preprocessing, features extraction and data classiifcation. Data normalization and data redundancy reduction are solved in the data preprocessing. The main goal of features extraction is to reduce the dimension and thus to reduce the time of data classiifcation. Support vector machine with balanced binary decision tree algorithm that is named BDT-SVM is introduced in the data classiifcation for training and testing the network intrusion data. Experimental results show that it can improve the accuracy of intrusion detection system by using the BDT-SVM algorithm and reduce the detection time with features extraction in the premise of ensuring accuracy.