中国有色金属学报(英文版)
中國有色金屬學報(英文版)
중국유색금속학보(영문판)
TRANSACTIONS OF NONFERROUS METALS SOCIETY OF CHINA
2015年
8期
2781-2788
,共8页
泡沫铝%吹气法%氧化膜%氧化动力学
泡沫鋁%吹氣法%氧化膜%氧化動力學
포말려%취기법%양화막%양화동역학
aluminum foam%gas injection foaming process%oxide film%oxidation kinetics
在620~710°C范围内,将压缩空气吹入含有陶瓷颗粒的A356铝合金熔体中制备泡沫铝样品。运用AES技术对泡壁表面进行分析,以研究温度对表面氧化膜厚度的影响。根据金属腐蚀学及流体力学原理建立表面氧化膜泡壁氧化动力学模型。从理论上预测不同温度条件下泡沫铝泡壁表面氧化膜的厚度,并与实验值进行对比。结果表明,在620~710°C范围内,考虑上浮过程的模型预测的氧化膜厚度理论值明显高于实验值,而不包含上浮过程的模型预测的理论值与实验值符合较好,且后者能更好地描述泡沫铝泡壁表面氧化膜的氧化过程。研究表明,吹气法泡沫铝泡壁表面氧化膜的氧化速率与温度之间的关系符合Arrhenius公式。
在620~710°C範圍內,將壓縮空氣吹入含有陶瓷顆粒的A356鋁閤金鎔體中製備泡沫鋁樣品。運用AES技術對泡壁錶麵進行分析,以研究溫度對錶麵氧化膜厚度的影響。根據金屬腐蝕學及流體力學原理建立錶麵氧化膜泡壁氧化動力學模型。從理論上預測不同溫度條件下泡沫鋁泡壁錶麵氧化膜的厚度,併與實驗值進行對比。結果錶明,在620~710°C範圍內,攷慮上浮過程的模型預測的氧化膜厚度理論值明顯高于實驗值,而不包含上浮過程的模型預測的理論值與實驗值符閤較好,且後者能更好地描述泡沫鋁泡壁錶麵氧化膜的氧化過程。研究錶明,吹氣法泡沫鋁泡壁錶麵氧化膜的氧化速率與溫度之間的關繫符閤Arrhenius公式。
재620~710°C범위내,장압축공기취입함유도자과립적A356려합금용체중제비포말려양품。운용AES기술대포벽표면진행분석,이연구온도대표면양화막후도적영향。근거금속부식학급류체역학원리건립표면양화막포벽양화동역학모형。종이론상예측불동온도조건하포말려포벽표면양화막적후도,병여실험치진행대비。결과표명,재620~710°C범위내,고필상부과정적모형예측적양화막후도이론치명현고우실험치,이불포함상부과정적모형예측적이론치여실험치부합교호,차후자능경호지묘술포말려포벽표면양화막적양화과정。연구표명,취기법포말려포벽표면양화막적양화속솔여온도지간적관계부합Arrhenius공식。
In the range of 620?710 °C, air was blown into A356 aluminum alloy melt to produce aluminum foams. In order to study the influence of temperature on the thickness of oxide film on bubble surface, Auger electron spectroscopy (AES) was used. Based on the knowledge of corrosion science and hydrodynamics, two oxidation kinetics models of oxide film on bubble surface were established. The thicknesses of oxide films produced at different temperatures were predicted through those two models. Furthermore, the theoretical values were compared with the experimental values. The results indicate that in the range of 620?710 °C, the theoretical values of the thickness of oxide film predicted by the model including the rising process are higher than the experimental values. While, the theoretical values predicted by the model without the rising process are in good agreement with the experimental values, which shows this model objectively describes the oxidation process of oxide film on bubble surface. This work suggests that the oxidation kinetics of oxide film on bubble surface of aluminum foams produced by gas injection foaming process follows the Arrhenius equation.