铁道学报
鐵道學報
철도학보
2015年
8期
53-59
,共7页
故障诊断%高速铁路%车载设备%主体模型%贝叶斯网络
故障診斷%高速鐵路%車載設備%主體模型%貝葉斯網絡
고장진단%고속철로%차재설비%주체모형%패협사망락
fault diagnosis%high speed railway%vehicle on-board equipment%topic model%Bayesian networks
本文以故障文本信息为依据,提出基于文本挖掘的高铁信号系统车载设备的故障诊断方法。针对故障追踪表记录的不规范性和随意性,采用主题模型对故障追踪表进行分析和特征提取;在此基础上,考虑到高铁信号系统车载设备故障诊断的不确定性,采用贝叶斯网络作为故障分类的方法。在贝叶斯网络结构的确定中,根据车载设备的特点与领域专家知识,提出适用于车载设备的贝叶斯结构学习算法 HDBN_SL。以武广线的现场数据为依据,进行实验分析,测试结果表明本文特征提取以及故障诊断方法具有较好的诊断准确性。
本文以故障文本信息為依據,提齣基于文本挖掘的高鐵信號繫統車載設備的故障診斷方法。針對故障追蹤錶記錄的不規範性和隨意性,採用主題模型對故障追蹤錶進行分析和特徵提取;在此基礎上,攷慮到高鐵信號繫統車載設備故障診斷的不確定性,採用貝葉斯網絡作為故障分類的方法。在貝葉斯網絡結構的確定中,根據車載設備的特點與領域專傢知識,提齣適用于車載設備的貝葉斯結構學習算法 HDBN_SL。以武廣線的現場數據為依據,進行實驗分析,測試結果錶明本文特徵提取以及故障診斷方法具有較好的診斷準確性。
본문이고장문본신식위의거,제출기우문본알굴적고철신호계통차재설비적고장진단방법。침대고장추종표기록적불규범성화수의성,채용주제모형대고장추종표진행분석화특정제취;재차기출상,고필도고철신호계통차재설비고장진단적불학정성,채용패협사망락작위고장분류적방법。재패협사망락결구적학정중,근거차재설비적특점여영역전가지식,제출괄용우차재설비적패협사결구학습산법 HDBN_SL。이무엄선적현장수거위의거,진행실험분석,측시결과표명본문특정제취이급고장진단방법구유교호적진단준학성。
Based on fault text data ,a fault diagnosis method for vehicle on‐board equipment (VOBE) of high speed railway signal system has been proposed .Due to the irregularity and arbitrary nature of fault tracing re‐cords ,the topic model was used for fault analysis and feature extraction .In addition ,considering the uncer‐tainty and complexity of fault diagnosis of VOBE of high speed railway signal system ,a Bayesian network (BN) based fault diagnosis system for VOBE was proposed .In the process of deriving an appropriate BN struc‐ture for VOBE ,subject to the characteristics and domain knowledge of VOBE ,a new algorithm called HDBN_SL (Hierarchical Diagnostic Bayesian Networks‐Structure Learning ) that is applicable to VOBE was proposed . Experimental analysis was conducted based on the field data from Wuhan‐Guangzhou high speed railway signa‐ling systems .The test results showed that the text mining feature extraction and fault diagnosis method deliv‐ered better diagnostic accuracy .