铁道标准设计
鐵道標準設計
철도표준설계
RAILWAY STANDARD DESIGN
2015年
9期
130-135
,共6页
交叠隧道%小净距%稳定性%数值模拟%地铁
交疊隧道%小淨距%穩定性%數值模擬%地鐵
교첩수도%소정거%은정성%수치모의%지철
Overlapping tunnel%Ultra-small spacing%Construction stability%Numerical simulation%Subway
为研究近距交叠隧道施工稳定性,以青岛地铁2号线枣山路—李村站区间隧道下穿3号线万年泉—李村站区间隧道为背景,通过数值模拟结合实测数据,分析交叠区地表变形、危险截面应力、变形规律及塑性区分布特点,由此可知:下穿施工后,地表变形从3.10 mm增至6.345 mm,由3号线沿线向交叠区中心延伸;当距交叠区中心超过40m时,地表变形影响可以忽略。交叠区截面受扰动影响最大,左右拱脚应力变化最明显,变化量为60、120 kPa,最大拉压应力分别为20 kPa、2.1 MPa,小于衬砌所用混凝土抗拉抗压强度。另外,3号线最大变形位于交叠区隧道拱顶,2号线最大变形位于中夹岩拱顶,分别为11.77、9.85 mm;3号线拱底、2号线拱顶在交叠区产生变形突变,分别为5.67、8.64 mm,均在可接受范围内,并结合实测数据验证了数据分析的可靠性;2号线塑性区分布较大,上下隧道间岩柱基本处于完全塑性状态,拱脚及拱顶处塑性区分布最广,但左右线开挖塑性区并未贯通,塑性区半径控制在2.0 m之内,保证了施工的稳定。
為研究近距交疊隧道施工穩定性,以青島地鐵2號線棘山路—李村站區間隧道下穿3號線萬年泉—李村站區間隧道為揹景,通過數值模擬結閤實測數據,分析交疊區地錶變形、危險截麵應力、變形規律及塑性區分佈特點,由此可知:下穿施工後,地錶變形從3.10 mm增至6.345 mm,由3號線沿線嚮交疊區中心延伸;噹距交疊區中心超過40m時,地錶變形影響可以忽略。交疊區截麵受擾動影響最大,左右拱腳應力變化最明顯,變化量為60、120 kPa,最大拉壓應力分彆為20 kPa、2.1 MPa,小于襯砌所用混凝土抗拉抗壓彊度。另外,3號線最大變形位于交疊區隧道拱頂,2號線最大變形位于中夾巖拱頂,分彆為11.77、9.85 mm;3號線拱底、2號線拱頂在交疊區產生變形突變,分彆為5.67、8.64 mm,均在可接受範圍內,併結閤實測數據驗證瞭數據分析的可靠性;2號線塑性區分佈較大,上下隧道間巖柱基本處于完全塑性狀態,拱腳及拱頂處塑性區分佈最廣,但左右線開挖塑性區併未貫通,塑性區半徑控製在2.0 m之內,保證瞭施工的穩定。
위연구근거교첩수도시공은정성,이청도지철2호선조산로—리촌참구간수도하천3호선만년천—리촌참구간수도위배경,통과수치모의결합실측수거,분석교첩구지표변형、위험절면응력、변형규률급소성구분포특점,유차가지:하천시공후,지표변형종3.10 mm증지6.345 mm,유3호선연선향교첩구중심연신;당거교첩구중심초과40m시,지표변형영향가이홀략。교첩구절면수우동영향최대,좌우공각응력변화최명현,변화량위60、120 kPa,최대랍압응력분별위20 kPa、2.1 MPa,소우츤체소용혼응토항랍항압강도。령외,3호선최대변형위우교첩구수도공정,2호선최대변형위우중협암공정,분별위11.77、9.85 mm;3호선공저、2호선공정재교첩구산생변형돌변,분별위5.67、8.64 mm,균재가접수범위내,병결합실측수거험증료수거분석적가고성;2호선소성구분포교대,상하수도간암주기본처우완전소성상태,공각급공정처소성구분포최엄,단좌우선개알소성구병미관통,소성구반경공제재2.0 m지내,보증료시공적은정。
Qingdao Metro 2 # and 3 # overlap between Zaoshan-Licun station and Wannianquan-Licun tunnel and the minimum vertical spacing is only 0. 2 m of a very small spacing category. To study construction stability, FLAC3D is used for dynamic simulation to analyze surface deformation, stress characteristics, deformation characteristics and plastic zone distribution. The results show that after under-passing construction, surface deformation increases from 3. 10 mm 6. 345 mm, extending from the 3# to the overlap zone center. When the distance from the overlapping center is more than 40m, surface deformation could be neglected. Section of overlapping zone is affected most by the disturbance, and the changes of stress of both arches are the most obvious with variation of 60 kPa and 120 kPa respectively. The maximum tensile and compressive stresses are 20 kPa and 2. 1 MPa respectively, which are far less than those of the lining concrete. In addition, the maximum deformation of 3# and 2# of 11. 77 mm and 9. 85 mm are respectively located on the vault and the folder rock. Mutations of 3# dome (2# vault) in the overlapping area are 5. 67 mm and 8. 64 mm, falling within the acceptable range. Compared with the measured data, the reliability of the simulation data and the stability of the construction are analyzed and verified. Plastic zone of 2# is larger, the folder rock is nearly in a plastic state, the plastic zone of arch and vault turns to be the most widely area, but the plastic zones of the left and right lines do not run together, and the plastic zone radius is within 2. 0 m, the stability of the construction is ensured.