机械工程学报
機械工程學報
궤계공정학보
CHINESE JOURNAL OF MECHANICAL ENGINEERING
2015年
15期
53-60
,共8页
杨从新%齐亚楠%黎义斌%王秀勇%程效锐
楊從新%齊亞楠%黎義斌%王秀勇%程效銳
양종신%제아남%려의빈%왕수용%정효예
核主泵%叶片数%匹配%叶轮%导叶
覈主泵%葉片數%匹配%葉輪%導葉
핵주빙%협편수%필배%협륜%도협
reactor coolant pump%blade number%matching%impeller%guide vane
为了阐明核主泵叶轮和导叶叶片数匹配特性对水力性能的影响。以缩比系数为0.5的模型泵为研究对象,基于核主泵几何参数,建立叶轮叶片数Z1和导叶叶片数Z2的多种匹配方案,通过数值方法预测多种匹配方案下核主泵设计工况下的水力性能。结果分析表明:只改变叶轮叶片数时,随着叶轮叶片数的增加,叶轮与泵扬程的增加趋势逐渐变缓;只改变导叶叶片数时,导叶叶片数的选取对核主泵效率影响的最大差值为8.48%。导叶和压水室内漩涡区和水力损失主要集中在以泵出口为起点沿叶轮旋转方向的半球形区域,且环形压水室的水力损失在总损失中所占比重最小为36.4%,表明环形压水室是核主泵水力损失最大的过流部件。根据多种叶片数匹配方案的结果分析,表明设计工况下核主泵叶轮与导叶叶片数的最佳匹配值为(Z1=4,Z2=9)、(Z1=5,Z2=12)、(Z1=6,Z2=11)和(Z1=3,Z2=7),即导叶叶片数在叶轮叶片数的2倍附近且两者互质时,泵的水力性能达到最佳值。研究结果为核主泵叶轮和导叶叶片数的选取提供了理论依据。
為瞭闡明覈主泵葉輪和導葉葉片數匹配特性對水力性能的影響。以縮比繫數為0.5的模型泵為研究對象,基于覈主泵幾何參數,建立葉輪葉片數Z1和導葉葉片數Z2的多種匹配方案,通過數值方法預測多種匹配方案下覈主泵設計工況下的水力性能。結果分析錶明:隻改變葉輪葉片數時,隨著葉輪葉片數的增加,葉輪與泵颺程的增加趨勢逐漸變緩;隻改變導葉葉片數時,導葉葉片數的選取對覈主泵效率影響的最大差值為8.48%。導葉和壓水室內漩渦區和水力損失主要集中在以泵齣口為起點沿葉輪鏇轉方嚮的半毬形區域,且環形壓水室的水力損失在總損失中所佔比重最小為36.4%,錶明環形壓水室是覈主泵水力損失最大的過流部件。根據多種葉片數匹配方案的結果分析,錶明設計工況下覈主泵葉輪與導葉葉片數的最佳匹配值為(Z1=4,Z2=9)、(Z1=5,Z2=12)、(Z1=6,Z2=11)和(Z1=3,Z2=7),即導葉葉片數在葉輪葉片數的2倍附近且兩者互質時,泵的水力性能達到最佳值。研究結果為覈主泵葉輪和導葉葉片數的選取提供瞭理論依據。
위료천명핵주빙협륜화도협협편수필배특성대수력성능적영향。이축비계수위0.5적모형빙위연구대상,기우핵주빙궤하삼수,건립협륜협편수Z1화도협협편수Z2적다충필배방안,통과수치방법예측다충필배방안하핵주빙설계공황하적수력성능。결과분석표명:지개변협륜협편수시,수착협륜협편수적증가,협륜여빙양정적증가추세축점변완;지개변도협협편수시,도협협편수적선취대핵주빙효솔영향적최대차치위8.48%。도협화압수실내선와구화수력손실주요집중재이빙출구위기점연협륜선전방향적반구형구역,차배형압수실적수력손실재총손실중소점비중최소위36.4%,표명배형압수실시핵주빙수력손실최대적과류부건。근거다충협편수필배방안적결과분석,표명설계공황하핵주빙협륜여도협협편수적최가필배치위(Z1=4,Z2=9)、(Z1=5,Z2=12)、(Z1=6,Z2=11)화(Z1=3,Z2=7),즉도협협편수재협륜협편수적2배부근차량자호질시,빙적수력성능체도최가치。연구결과위핵주빙협륜화도협협편수적선취제공료이론의거。
In order to clarify the effect of blade number matching between impeller and guide vane on the hydraulic performances of the reactor coolant pump (RCP), model pumps (at a scale =0.5) are studied. Many RCPs with different matching laws between the impeller blade numberZ1 and the guide vane blade numberZ2 are built based on the references and geometry parameters of the RCP. Then their performances are predicted by numerical simulation. After the performances are analyzed, results in the studies are as follows. When the impeller blade number increases with the other geometry parameters of the RCP constant, the heads of impeller and pump both tend to increase with increasing trend gradually slow. When the guide vane blade number increases with the other geometry parameters of the RCP constant, the best pump can make efficiency improve by 8.48% relative to the worst one. Vortices and hydraulic loss within the guide vane and circular casing are mainly concentrated in the hemisphere region which starts with the pump outlet and goes along the impeller rotation direction. The circular casing has more hydraulic loss than the other flow components in the RCP. And the hydraulic loss of circular casing at least accounts for 36.4% of the total hydraulic loss. What is more, at the designed condition, best blade number matching laws between impeller and guide vane are (Z1=4,Z2=9)、(Z1=5,Z2=12)、(Z1=6,Z2=11) and (Z1=3,Z2=7), namely the efficiency and head of the RCP get the best value on condition that the guide vane blade number is about double of the impeller blade number and the blade numbers are both relatively prime. In conclusion, the above results can provide reference for choosing blade numbers matching law between impeller and guide vane of the RCP.