机械工程学报
機械工程學報
궤계공정학보
CHINESE JOURNAL OF MECHANICAL ENGINEERING
2015年
15期
46-52
,共7页
董晓传%金淼%姚阳%张杰
董曉傳%金淼%姚暘%張傑
동효전%금묘%요양%장걸
组合结构%深梁%整体性%临界预紧力%傅里叶级数
組閤結構%深樑%整體性%臨界預緊力%傅裏葉級數
조합결구%심량%정체성%림계예긴력%부리협급수
composite structure%deep beam%integration%criticalpreload%Fourier series
为确定合理的临界预紧力,保证预紧组合结构横梁的整体性,提出采用等效梁长法修正传统Airy应力函数计算结果,从而得到更准确的临界预紧力。基于平面应变理论,建立临界预紧力的理论计算模型,通过叠加原理,分别得到弯曲模型和压缩模型中间截面x方向应力的傅里叶三角级数形式解,分析误差原因;采用等效梁长法进一步修正,结合临界开缝判据,得到临界预紧力理论计算公式。试验结果表明:等效梁长法修正的临界预紧力理论计算结果与试验结果最小误差为10.1%,最大误差为13.5%,与试验结果吻合较好,能够为大型成形设备的预紧组合结构横梁的设计提供理论依据。
為確定閤理的臨界預緊力,保證預緊組閤結構橫樑的整體性,提齣採用等效樑長法脩正傳統Airy應力函數計算結果,從而得到更準確的臨界預緊力。基于平麵應變理論,建立臨界預緊力的理論計算模型,通過疊加原理,分彆得到彎麯模型和壓縮模型中間截麵x方嚮應力的傅裏葉三角級數形式解,分析誤差原因;採用等效樑長法進一步脩正,結閤臨界開縫判據,得到臨界預緊力理論計算公式。試驗結果錶明:等效樑長法脩正的臨界預緊力理論計算結果與試驗結果最小誤差為10.1%,最大誤差為13.5%,與試驗結果吻閤較好,能夠為大型成形設備的預緊組閤結構橫樑的設計提供理論依據。
위학정합리적림계예긴력,보증예긴조합결구횡량적정체성,제출채용등효량장법수정전통Airy응력함수계산결과,종이득도경준학적림계예긴력。기우평면응변이론,건립림계예긴력적이론계산모형,통과첩가원리,분별득도만곡모형화압축모형중간절면x방향응력적부리협삼각급수형식해,분석오차원인;채용등효량장법진일보수정,결합림계개봉판거,득도림계예긴력이론계산공식。시험결과표명:등효량장법수정적림계예긴력이론계산결과여시험결과최소오차위10.1%,최대오차위13.5%,여시험결과문합교호,능구위대형성형설비적예긴조합결구횡량적설계제공이론의거。
To determine a reasonable critical preload and ensure the integration of prestressed composite deep beam, the method of equivalent-beam-length is proposed to revise the traditional theoretical results of airy stress function. Then a more accurate critical preload is obtained. Firstly, the theoretical calculation model of critical preload is established based on the plane strain theory. Secondly, based on the principle of superposition, the stress in the direction ofx in the middle section of bending model and prestressed model are deduced and were presented in the way of Fourier series. The reasons for error are analyzed. Then, it is further revised with the method of equivalent-beam-length. Finally the theoretical formula of critical preload is derivedcombined with the critical criterion. Experimental results show that the minimum error between theoretical results of critical preload revised with the method of equivalent-beam-length and experimental results is 10.1%, while the maximum error is 13.5%. The theoretical results are in good agreement with the experimental results. It is able to provide theoretical basis for the design of prestressed composite beams in large mechanical equipments.