机械工程学报
機械工程學報
궤계공정학보
CHINESE JOURNAL OF MECHANICAL ENGINEERING
2015年
15期
148-157
,共10页
李春磊%莫蓉%常智勇%张栋梁%向颖
李春磊%莫蓉%常智勇%張棟樑%嚮穎
리춘뢰%막용%상지용%장동량%향영
多维制造信息%维数约简%聚类分析%演化细胞学习自动机%典型工艺路线
多維製造信息%維數約簡%聚類分析%縯化細胞學習自動機%典型工藝路線
다유제조신식%유수약간%취류분석%연화세포학습자동궤%전형공예로선
multi-dimensional manufacturing information%dimensionality reduction%clustering analysis%evolutionary cellular learning automata%typical process route
为了解决以往基于聚类分析的工艺路线发现方法重用价值低的难题,使最终提取到的典型工艺路线能够更好地支持基于制造资源的重用,提出一种融入多维制造信息的产品典型工艺路线发现方法。方法研究定义了融入多维制造信息的工艺信息元和工艺路线信息模型,并通过运用核主成分分析法对组成工艺路线的工艺信息元进行了维数约简,得到工艺路线本质维度的低维信息模型。在低维工艺路线信息模型的基础上,提出了工艺路线聚类距离的计算方法,结合演化细胞学习自动机实现了工艺路线的智能聚类,并从聚类簇中提取到了典型工艺路线。通过实例验证说明了所提方法的有效性。
為瞭解決以往基于聚類分析的工藝路線髮現方法重用價值低的難題,使最終提取到的典型工藝路線能夠更好地支持基于製造資源的重用,提齣一種融入多維製造信息的產品典型工藝路線髮現方法。方法研究定義瞭融入多維製造信息的工藝信息元和工藝路線信息模型,併通過運用覈主成分分析法對組成工藝路線的工藝信息元進行瞭維數約簡,得到工藝路線本質維度的低維信息模型。在低維工藝路線信息模型的基礎上,提齣瞭工藝路線聚類距離的計算方法,結閤縯化細胞學習自動機實現瞭工藝路線的智能聚類,併從聚類簇中提取到瞭典型工藝路線。通過實例驗證說明瞭所提方法的有效性。
위료해결이왕기우취류분석적공예로선발현방법중용개치저적난제,사최종제취도적전형공예로선능구경호지지지기우제조자원적중용,제출일충융입다유제조신식적산품전형공예로선발현방법。방법연구정의료융입다유제조신식적공예신식원화공예로선신식모형,병통과운용핵주성분분석법대조성공예로선적공예신식원진행료유수약간,득도공예로선본질유도적저유신식모형。재저유공예로선신식모형적기출상,제출료공예로선취류거리적계산방법,결합연화세포학습자동궤실현료공예로선적지능취류,병종취류족중제취도료전형공예로선。통과실례험증설명료소제방법적유효성。
To solve the difficulty of low reuse value in the traditional process route discovery methods based clustering analysis and to make the extracted process routes support the effective reuse based manufacturing resources, a multi-dimensional manufacturing information based typical product process route discovery method is presented. A process information element and process route information model based multi-dimensional manufacturing information are established, and consequently the lower-dimensional process route model of its own dimensionality is obtained by using kernel principal component analysis(KPCA) to reduce the dimensionality of process information element. Based on the lower-dimensional process route model, a distance calculation method for calculate the similarity between process routes is proposed and evolutionary cellular learning automata was applied to realize the intelligent clustering division of process routes. The typical process routes are extracted from the clustering clusters consequently. Experimental results show that the effectiveness of proposed method is verified.