电力系统自动化
電力繫統自動化
전력계통자동화
AUTOMATION OF ELECTRIC POWER SYSTEMS
2015年
16期
16-22
,共7页
叶林%陈政%赵永宁%朱倩雯
葉林%陳政%趙永寧%硃倩雯
협림%진정%조영저%주천문
功率预测%遗传算法%模糊径向基神经网络%平滑功率波动
功率預測%遺傳算法%模糊徑嚮基神經網絡%平滑功率波動
공솔예측%유전산법%모호경향기신경망락%평활공솔파동
power forecasting%genetic algorithm%fuzzy radial basis function neural network%smooth power fluctuations
针对光伏发电系统出力波动问题,提出遗传算法(GA)—模糊径向基(RBF)神经网络的光伏发电功率预测模型,将功率预测值应用于光伏发电的蓄电池储能功率调节系统,以降低对电网的冲击。选择与待预测日天气类型相同、日期相近、温度欧氏距离最小的历史日作为相似日,把与光伏发电功率相关性大的太阳辐射强度和温度作为模型输入变量,提出 K 均值聚类和遗传算法的参数优化方法,建立基于 GA—模糊 RBF 神经网络的最终预测模型。在光伏功率预测的基础上,提出一种平滑控制策略,对光伏并网功率进行有效调节,从而达到平滑光伏功率波动的目的。实例证明,所述预测模型具有较高精度,并验证了平滑功率波动控制策略的有效性。
針對光伏髮電繫統齣力波動問題,提齣遺傳算法(GA)—模糊徑嚮基(RBF)神經網絡的光伏髮電功率預測模型,將功率預測值應用于光伏髮電的蓄電池儲能功率調節繫統,以降低對電網的遲擊。選擇與待預測日天氣類型相同、日期相近、溫度歐氏距離最小的歷史日作為相似日,把與光伏髮電功率相關性大的太暘輻射彊度和溫度作為模型輸入變量,提齣 K 均值聚類和遺傳算法的參數優化方法,建立基于 GA—模糊 RBF 神經網絡的最終預測模型。在光伏功率預測的基礎上,提齣一種平滑控製策略,對光伏併網功率進行有效調節,從而達到平滑光伏功率波動的目的。實例證明,所述預測模型具有較高精度,併驗證瞭平滑功率波動控製策略的有效性。
침대광복발전계통출력파동문제,제출유전산법(GA)—모호경향기(RBF)신경망락적광복발전공솔예측모형,장공솔예측치응용우광복발전적축전지저능공솔조절계통,이강저대전망적충격。선택여대예측일천기류형상동、일기상근、온도구씨거리최소적역사일작위상사일,파여광복발전공솔상관성대적태양복사강도화온도작위모형수입변량,제출 K 균치취류화유전산법적삼수우화방법,건립기우 GA—모호 RBF 신경망락적최종예측모형。재광복공솔예측적기출상,제출일충평활공제책략,대광복병망공솔진행유효조절,종이체도평활광복공솔파동적목적。실예증명,소술예측모형구유교고정도,병험증료평활공솔파동공제책략적유효성。
To deal with the problem of fluctuating photovoltaic power,a photovoltaic power forecasting model based on genetic algorithm (GA) and fuzzy radial basis function (RBF) neural network is proposed and the output power is applied to the battery energy storage system to mitigate the electric shock on the power system.A historical day of identical weather type,a close date and minimum temperature Euclidean distance is chosen as the similar day.The solar radiation intensity and temperature closely correlated with photovoltaic (PV) power are chosen as input variables of the model,a GA and fuzzy RBF neural network is built as the final prediction model based on the parameter optimization method of K-means clustering and genetic algorithm.Furthermore,a smooth control strategy considering PV power forecasting is used to control the grid-connected PV power,so as to smooth the PV power fluctuation.The experimental results show that the proposed forecasting model has high accuracy and the smooth control strategy for power fluctuation based on photovoltaic power forecasting is effective.