金属矿山
金屬礦山
금속광산
METAL MINE
2015年
7期
147-151
,共5页
陈熙%徐新阳%赵冰%邢家良
陳熙%徐新暘%趙冰%邢傢良
진희%서신양%조빙%형가량
电沉积%喷射床%Ni2+去除率%电流效率%DO值
電沉積%噴射床%Ni2+去除率%電流效率%DO值
전침적%분사상%Ni2+거제솔%전류효솔%DO치
Electro-deposition%Spouted bed%Removal rate of Ni2+%Current efficiency%DO value
为检验恒电流喷射床微粒电沉积法高效、低成本处理含镍废水的可行性,以实验室模拟酸性含镍废水为研究对象,进行了工艺条件优化研究。结果表明:①Ni2+去除率和电流效率随pH值的增大先升后降;电流值增大Ni2+去除率上升、电流效率下降;沉积液温度升高,Ni2+去除率和电流效率下降;微粒粒径越小,Ni2+去除率和电流效率越高;氮气的鼓入可提高电流效率和Ni2+去除率。②DO值随pH值和电流强度增大而增大,随温度升高而降低,氮气的鼓入可有效降低DO值。③氮气的鼓入主要通过降低沉积液的DO值来抑制沉积金属镍的返溶,也削弱了因浓差极化导致的Ni2+去除率和电流效率下降的问题。④Ni2+浓度为1 g/L的废水,在pH=4.5,微粒粒径为1.8 mm,电流强度为15 A,沉积液的温度为25℃,有氮气鼓入的情况下,电沉积180 min的Ni2+去除率为74.77%,平均电流效率为67.67%,比不鼓入氮气分别高28个百分点和16.66个百分点。由于电沉积可以直接得到金属镍单质,因此,从实践上讲,该方法具有显著的经济和环境效益,亦可作为离子交换或膜分离法前的预处理方法。
為檢驗恆電流噴射床微粒電沉積法高效、低成本處理含鎳廢水的可行性,以實驗室模擬痠性含鎳廢水為研究對象,進行瞭工藝條件優化研究。結果錶明:①Ni2+去除率和電流效率隨pH值的增大先升後降;電流值增大Ni2+去除率上升、電流效率下降;沉積液溫度升高,Ni2+去除率和電流效率下降;微粒粒徑越小,Ni2+去除率和電流效率越高;氮氣的鼓入可提高電流效率和Ni2+去除率。②DO值隨pH值和電流彊度增大而增大,隨溫度升高而降低,氮氣的鼓入可有效降低DO值。③氮氣的鼓入主要通過降低沉積液的DO值來抑製沉積金屬鎳的返溶,也削弱瞭因濃差極化導緻的Ni2+去除率和電流效率下降的問題。④Ni2+濃度為1 g/L的廢水,在pH=4.5,微粒粒徑為1.8 mm,電流彊度為15 A,沉積液的溫度為25℃,有氮氣鼓入的情況下,電沉積180 min的Ni2+去除率為74.77%,平均電流效率為67.67%,比不鼓入氮氣分彆高28箇百分點和16.66箇百分點。由于電沉積可以直接得到金屬鎳單質,因此,從實踐上講,該方法具有顯著的經濟和環境效益,亦可作為離子交換或膜分離法前的預處理方法。
위검험항전류분사상미립전침적법고효、저성본처리함얼폐수적가행성,이실험실모의산성함얼폐수위연구대상,진행료공예조건우화연구。결과표명:①Ni2+거제솔화전류효솔수pH치적증대선승후강;전류치증대Ni2+거제솔상승、전류효솔하강;침적액온도승고,Ni2+거제솔화전류효솔하강;미립립경월소,Ni2+거제솔화전류효솔월고;담기적고입가제고전류효솔화Ni2+거제솔。②DO치수pH치화전류강도증대이증대,수온도승고이강저,담기적고입가유효강저DO치。③담기적고입주요통과강저침적액적DO치래억제침적금속얼적반용,야삭약료인농차겁화도치적Ni2+거제솔화전류효솔하강적문제。④Ni2+농도위1 g/L적폐수,재pH=4.5,미립립경위1.8 mm,전류강도위15 A,침적액적온도위25℃,유담기고입적정황하,전침적180 min적Ni2+거제솔위74.77%,평균전류효솔위67.67%,비불고입담기분별고28개백분점화16.66개백분점。유우전침적가이직접득도금속얼단질,인차,종실천상강,해방법구유현저적경제화배경효익,역가작위리자교환혹막분리법전적예처리방법。
In order to find out the feasibility in dealing with Ni2+containing wastewater with constant current spouted bed particle electro-deposition method,the technical conditions optimization research has been conducted with simulated acid Ni2+wastewater. The results are as follows:①with the increase of pH value,the removal rate of Ni2+and current efficiency increased first and then decreased;with the increase of current value,the removal rate of Ni2+ increased,current efficiency decreased;both removal rate of Ni2+ and current efficiency decreased as the temperature increased; ②DO value increased with the in-crease of pH and current value,while decreased with temperature. Blowing nitrogen effectively reduced the DO value.③Blo-wing nitrogen prevented the nickel deposited back to dissolve,also weakened the concentration polarization which could result in the decline of the Ni2+ removal rate and current efficiency.④under the conditions of Ni2+ concentration 1 g/L,pH=4. 5, particle size 1. 8 mm,current intensity 15 A,electrolyte temperature 25℃ and blowing N2 for 180 min,the removal rate of Ni2+was 74. 77%,the average current efficiency was 67. 67%,which were higher by 28 and 16. 66 percentage points than that without N2 respectively. Since electro-deposition can directly obtain nickel metal from wastewater,this method has remarkable economic and environmental benefits in practice,and also can be set as a pretreatment method before ion exchange and mem-brane separation.