表面技术
錶麵技術
표면기술
SURFACE TECHNOLOGY
2015年
8期
110-114
,共5页
黄颖军%楼淼%李莎莎%芦玉峰
黃穎軍%樓淼%李莎莎%蘆玉峰
황영군%루묘%리사사%호옥봉
耦合多电极矩阵传感技术%埋地容器%腐蚀速率%在线监测%轻集料混凝土%膨润土
耦閤多電極矩陣傳感技術%埋地容器%腐蝕速率%在線鑑測%輕集料混凝土%膨潤土
우합다전겁구진전감기술%매지용기%부식속솔%재선감측%경집료혼응토%팽윤토
coupled multielectrode array sensors%buried vessel%corrosion rate%on-line monitoring%light aggregate concrete%bentonite
目的:介绍耦合多电极矩阵传感技术的工作原理及系统组成,研究16 MnR钢在轻集料混凝土和膨润土填埋环境下的腐蚀规律。方法将腐蚀探头埋于轻集料混凝土和膨润土两种户外填埋环境中,研究16 MnR钢在两种环境中的腐蚀规律;采用实验室包裹块形式进行干湿交替加速腐蚀,研究加速试验方法的加速效果。结果16MnR钢在膨润土和轻集料混凝土中的年平均局部腐蚀速率分别为23.7μm/a和0.11μm/a;在干湿交替加速腐蚀条件下,膨润土环境的平均腐蚀速率为109.1μm/a,轻集料混凝土环境的平均局部腐蚀速为1.7μm/a。结论16MnR钢在膨润土环境下的局部腐蚀速率与环境温度的变化趋势相同;轻集料混凝土对16 MnR钢的腐蚀防护效果优于膨润土。采用干湿交替加速腐蚀方法,16 MnR钢在轻集料混凝土和膨润土环境的腐蚀效果分别提高了17倍和5倍。
目的:介紹耦閤多電極矩陣傳感技術的工作原理及繫統組成,研究16 MnR鋼在輕集料混凝土和膨潤土填埋環境下的腐蝕規律。方法將腐蝕探頭埋于輕集料混凝土和膨潤土兩種戶外填埋環境中,研究16 MnR鋼在兩種環境中的腐蝕規律;採用實驗室包裹塊形式進行榦濕交替加速腐蝕,研究加速試驗方法的加速效果。結果16MnR鋼在膨潤土和輕集料混凝土中的年平均跼部腐蝕速率分彆為23.7μm/a和0.11μm/a;在榦濕交替加速腐蝕條件下,膨潤土環境的平均腐蝕速率為109.1μm/a,輕集料混凝土環境的平均跼部腐蝕速為1.7μm/a。結論16MnR鋼在膨潤土環境下的跼部腐蝕速率與環境溫度的變化趨勢相同;輕集料混凝土對16 MnR鋼的腐蝕防護效果優于膨潤土。採用榦濕交替加速腐蝕方法,16 MnR鋼在輕集料混凝土和膨潤土環境的腐蝕效果分彆提高瞭17倍和5倍。
목적:개소우합다전겁구진전감기술적공작원리급계통조성,연구16 MnR강재경집료혼응토화팽윤토전매배경하적부식규률。방법장부식탐두매우경집료혼응토화팽윤토량충호외전매배경중,연구16 MnR강재량충배경중적부식규률;채용실험실포과괴형식진행간습교체가속부식,연구가속시험방법적가속효과。결과16MnR강재팽윤토화경집료혼응토중적년평균국부부식속솔분별위23.7μm/a화0.11μm/a;재간습교체가속부식조건하,팽윤토배경적평균부식속솔위109.1μm/a,경집료혼응토배경적평균국부부식속위1.7μm/a。결론16MnR강재팽윤토배경하적국부부식속솔여배경온도적변화추세상동;경집료혼응토대16 MnR강적부식방호효과우우팽윤토。채용간습교체가속부식방법,16 MnR강재경집료혼응토화팽윤토배경적부식효과분별제고료17배화5배。
ABSTRACT:Objective To introduce the operating principle and system composition of coupled multielectrode array sensors (CMAS) , and study the corrosion law of 16MnR steels buried in light aggregate concrete and bentonite. Methods The corrosion monitors were buried in outdoor environments of light aggregate concrete and bentonite, to study the corrosion law of 16MnR steels in these two surroundings. The speedup of dry-wet alternate accelerated corrosion was studied in lab by burying the detectors in la-boratory wrapped pieces. Results The annual average localized corrosion rate of 16MnR steels was 23. 7 μm/a and 0. 1 μm/a in bentonite and light aggregate concrete, respectively. The average localized corrosion rate of 16MnR steels in bentonite and light ag-gregate concrete was 109. 1μm/a and 1. 7μm/a respectively by dry-wet alternate accelerated corrosion. Conclusion The localized corrosion rate of 16MnR steels in bentonite changed with the environment temperature. The light aggregate concrete had better cor-rosion prevention effect than bentonite on 16MnR steels. The accelerated ratios of dry-wet alternate accelerated corrosion were ap-proximately 17 and 5 in light aggregate concrete and bentonite, respectively.