东北大学学报(自然科学版)
東北大學學報(自然科學版)
동북대학학보(자연과학판)
JOURNAL OF NORTHEASTERN UNIVERSITY(NATURAL SCIENCE)
2015年
8期
1084-1088
,共5页
王超%王建辉%顾树生%张宇献
王超%王建輝%顧樹生%張宇獻
왕초%왕건휘%고수생%장우헌
核主元分析%带钢延伸量%免疫粒子群算法%最小二乘支持向量机%软测量
覈主元分析%帶鋼延伸量%免疫粒子群算法%最小二乘支持嚮量機%軟測量
핵주원분석%대강연신량%면역입자군산법%최소이승지지향량궤%연측량
kernel principal component analysis%strip elongation%immune clone particle swarm optimization%least squares support vector machine%soft-sensing
带钢退火过程中存在多变量非线性主导因素和数据噪声,难以用数学模型精确描述退火炉内带钢的延伸量。针对这一问题,提出基于核主元分析(KPCA)与免疫粒子群(ICPSO)优化最小二乘支持向量机(LSSVM)的炉内带钢延伸量软测量方法。采用ICPSO算法避免了粒子群算法易陷入局部最优的缺陷,利用ICPSO对LSSVM进行参数寻优,通过KPCA去除样本噪声,提取输入数据样本中的非线性主元信息,建立ICPSO-LSSVM软测量模型。此方法用于退火炉内带钢延伸量预测,通过现场生产数据仿真实验进行非线性函数估计;对比其他几种现有算法,实验结果表明本文方法具有较高的预测精度。
帶鋼退火過程中存在多變量非線性主導因素和數據譟聲,難以用數學模型精確描述退火爐內帶鋼的延伸量。針對這一問題,提齣基于覈主元分析(KPCA)與免疫粒子群(ICPSO)優化最小二乘支持嚮量機(LSSVM)的爐內帶鋼延伸量軟測量方法。採用ICPSO算法避免瞭粒子群算法易陷入跼部最優的缺陷,利用ICPSO對LSSVM進行參數尋優,通過KPCA去除樣本譟聲,提取輸入數據樣本中的非線性主元信息,建立ICPSO-LSSVM軟測量模型。此方法用于退火爐內帶鋼延伸量預測,通過現場生產數據倣真實驗進行非線性函數估計;對比其他幾種現有算法,實驗結果錶明本文方法具有較高的預測精度。
대강퇴화과정중존재다변량비선성주도인소화수거조성,난이용수학모형정학묘술퇴화로내대강적연신량。침대저일문제,제출기우핵주원분석(KPCA)여면역입자군(ICPSO)우화최소이승지지향량궤(LSSVM)적로내대강연신량연측량방법。채용ICPSO산법피면료입자군산법역함입국부최우적결함,이용ICPSO대LSSVM진행삼수심우,통과KPCA거제양본조성,제취수입수거양본중적비선성주원신식,건립ICPSO-LSSVM연측량모형。차방법용우퇴화로내대강연신량예측,통과현장생산수거방진실험진행비선성함수고계;대비기타궤충현유산법,실험결과표명본문방법구유교고적예측정도。
The strip elongation is difficult to predict accurately with mathematical model,which related with multi-variable nonlinear factors and data noise in the annealing process.Thus,the optimal soft-sensing method was proposed based on kernel principal component analysis (KPCA) and optimized least squares support vector machine (LSSVM)by immune clone particle swarm optimization (ICPSO).ICPSO can avoid the particles sinking into premature convergence and running into local optimization in the iterative process which was generated by particle swarm optimization (PSO)algorithm,and can also optimize the parameters of LSSVM.Then,KPCA was used to denoise the input data set and capture the high-dimensional nonlinear principal components in input data space,and the principal components were input into the ICPSO-LSSVM model to establish the soft-sensing prediction model.The proposed method was successfully applied to the strip elongation prediction in annealing furnace.The simulation results show that the KPCA and ICPSO-LSSVM model have higher prediction accuracy, compared with other algorithms.