润滑与密封
潤滑與密封
윤활여밀봉
LUBRICATION ENGINEERING
2015年
7期
17-23,74
,共8页
差速浮动式传输密封%端面流场%液膜刚度%泄漏量
差速浮動式傳輸密封%耑麵流場%液膜剛度%洩漏量
차속부동식전수밀봉%단면류장%액막강도%설루량
differential floating transmission seal%face flow field%fluid film stiffness%leakage rate
介绍一种新型的非接触式轴端机械密封———差速浮动式传输密封的工作原理及密封机制,根据流体力学的基本原理和静压气体润滑理论,建立传输密封泄漏量、压力分布、摩擦转矩、端面温升、承载能力和液膜刚度的计算公式。利用MATLAB软件对传输密封的性能进行数值模拟,分析密封结构参数和动力参数对密封性能的影响。分析结果表明,端面泄漏量的重要影响因素是端面间隙、液压油的压力波动和液压油的黏度,动环转速对泄漏流量的影响很小;密封间隙中主要以混合摩擦为主,且摩擦转矩与端面压力成正比,与密封间隙近似成反比例关系;密封间隙中的液膜刚度在初始液阻比为1时取最大值,且液膜刚度与端面压力成正比,与密封间隙成反比例关系。
介紹一種新型的非接觸式軸耑機械密封———差速浮動式傳輸密封的工作原理及密封機製,根據流體力學的基本原理和靜壓氣體潤滑理論,建立傳輸密封洩漏量、壓力分佈、摩抆轉矩、耑麵溫升、承載能力和液膜剛度的計算公式。利用MATLAB軟件對傳輸密封的性能進行數值模擬,分析密封結構參數和動力參數對密封性能的影響。分析結果錶明,耑麵洩漏量的重要影響因素是耑麵間隙、液壓油的壓力波動和液壓油的黏度,動環轉速對洩漏流量的影響很小;密封間隙中主要以混閤摩抆為主,且摩抆轉矩與耑麵壓力成正比,與密封間隙近似成反比例關繫;密封間隙中的液膜剛度在初始液阻比為1時取最大值,且液膜剛度與耑麵壓力成正比,與密封間隙成反比例關繫。
개소일충신형적비접촉식축단궤계밀봉———차속부동식전수밀봉적공작원리급밀봉궤제,근거류체역학적기본원리화정압기체윤활이론,건립전수밀봉설루량、압력분포、마찰전구、단면온승、승재능력화액막강도적계산공식。이용MATLAB연건대전수밀봉적성능진행수치모의,분석밀봉결구삼수화동력삼수대밀봉성능적영향。분석결과표명,단면설루량적중요영향인소시단면간극、액압유적압력파동화액압유적점도,동배전속대설루류량적영향흔소;밀봉간극중주요이혼합마찰위주,차마찰전구여단면압력성정비,여밀봉간극근사성반비례관계;밀봉간극중적액막강도재초시액조비위1시취최대치,차액막강도여단면압력성정비,여밀봉간극성반비례관계。
The working principle and sealing mechanism of transmission seal of a new type of non?contacting end me?chanical seal, the differential floating transmission seal were introduced. Based on the basic principles of fluid dynamics and static pressure lubricated bearings theory, the calculation formulas of leakage rate, pressure distribution, friction torque, end temperature, load capacity and fluid film stiffness of transmission seal were established. Numerical simulation of sealing performance of transmission seal was carried out by MATLAB software, and the effects of structure parameters and dynamic parameters on sealing performances were analyzed. The results show that the important factors influencing the leakage rate are end face clearance, pressure fluctuations and viscosity of hydraulic oil, and the ring speed has very small influence. In transmission seal, mixed friction is the main friction form, the friction torque is proportional to end surface pressure, and is similar inverse relationship with end face clearance. When the initial fluid resistance ratio is equal to 1, the fluid film stiffness takes its maximum. The fluid film stiffness is proportional to end surface pressure, and is inverse re?lationship with end face clearance.