西北工业大学学报
西北工業大學學報
서북공업대학학보
JOURNAL OF NORTHWESTERN POLYTECHNICAL UNIVERSITY
2015年
4期
672-676
,共5页
计算机仿真%MATLAB%分类算法%字典学习%改进的遗传匹配追踪算法%雷达目标识别%高分辨距离像%稀疏表示%冗余字典
計算機倣真%MATLAB%分類算法%字典學習%改進的遺傳匹配追蹤算法%雷達目標識彆%高分辨距離像%稀疏錶示%冗餘字典
계산궤방진%MATLAB%분류산법%자전학습%개진적유전필배추종산법%뢰체목표식별%고분변거리상%희소표시%용여자전
computer simulation%MATLAB%taxonomic algorithm%dictionary learning%IGAMP(improved genetic algorithm matching pursuit)%radar target recognition%high resolution range profile%sparse represen-tation%redundant dictionary
在使用高分辨距离像进行雷达目标识别时,有时必须面对大样本问题,可实际上雷达在某一时刻观测到的物理过程是很少的,传统的方法在识别过程中从未考虑过距离像信号的稀疏性。为此,文中提出了一种基于结构划分冗余字典完成雷达一维距离像稀疏表示,进而实现目标识别的算法。该算法首先依据字典原子的结构特点划分冗余字典,简化字典表述的同时减少原子数据存储量;随后,采用改进的遗传匹配追踪算法(IGAMP)对一维距离像训练样本进行稀疏分解以获得各类目标的类别字典;最后,根据类别字典分析测试样本的重构误差实现目标识别。仿真实验证明,文中算法简捷、识别率高,即便受到噪声干扰依然能稳健地识别目标。
在使用高分辨距離像進行雷達目標識彆時,有時必鬚麵對大樣本問題,可實際上雷達在某一時刻觀測到的物理過程是很少的,傳統的方法在識彆過程中從未攷慮過距離像信號的稀疏性。為此,文中提齣瞭一種基于結構劃分冗餘字典完成雷達一維距離像稀疏錶示,進而實現目標識彆的算法。該算法首先依據字典原子的結構特點劃分冗餘字典,簡化字典錶述的同時減少原子數據存儲量;隨後,採用改進的遺傳匹配追蹤算法(IGAMP)對一維距離像訓練樣本進行稀疏分解以穫得各類目標的類彆字典;最後,根據類彆字典分析測試樣本的重構誤差實現目標識彆。倣真實驗證明,文中算法簡捷、識彆率高,即便受到譟聲榦擾依然能穩健地識彆目標。
재사용고분변거리상진행뢰체목표식별시,유시필수면대대양본문제,가실제상뢰체재모일시각관측도적물리과정시흔소적,전통적방법재식별과정중종미고필과거리상신호적희소성。위차,문중제출료일충기우결구화분용여자전완성뢰체일유거리상희소표시,진이실현목표식별적산법。해산법수선의거자전원자적결구특점화분용여자전,간화자전표술적동시감소원자수거존저량;수후,채용개진적유전필배추종산법(IGAMP)대일유거리상훈련양본진행희소분해이획득각류목표적유별자전;최후,근거유별자전분석측시양본적중구오차실현목표식별。방진실험증명,문중산법간첩、식별솔고,즉편수도조성간우의연능은건지식별목표。
When high resolution range profile(HRRP) are used to recognize radar target, we need to deal with large sample size problem sometimes. In fact, the physical processes observed by a radar is very limited. None of the traditional methods makes use of the sparseness of HRRP samples. Thus, an redundant dictionary and a fast sparse representation algorithm are used to implement radar target recognition here. First, a Gabor redundant dic?tionary was partitioned by the characteristics of the atoms in it. By doing this, the atoms storage was decreased and the dictionary was generated faster. Then, the sparse representation algorithm (IGAMP) was used to produce the training samples′ taxonomic dictionaries quickly. Finally, the reconstruction errors of testing samples were calculated to recognize the targets. The simulations show that this algorithm has the advantages of conciseness, high?er recognition rate and good robustness.