西北工业大学学报
西北工業大學學報
서북공업대학학보
JOURNAL OF NORTHWESTERN POLYTECHNICAL UNIVERSITY
2015年
4期
644-650
,共7页
邵立%张树生%白晓亮%王荣荣
邵立%張樹生%白曉亮%王榮榮
소립%장수생%백효량%왕영영
计算机辅助工艺规划%特征提取%参数化%加工元体%制造特征%工序模型
計算機輔助工藝規劃%特徵提取%參數化%加工元體%製造特徵%工序模型
계산궤보조공예규화%특정제취%삼수화%가공원체%제조특정%공서모형
computer aided process planning%feature extraction%parameterization%machining volume%manufac-turing feature%process model
为了在三维 CAPP 系统中展现产品零件由毛坯状态向最终成品动态演变的过程,提出了一种以加工元体为基本单元的三维工序模型构建方法。首先,提出了制造特征及加工元体的表达方法,建立了属性邻接图、制造特征体与加工元体的关联关系,对制造特征库进行了构建。接着,对于待加工三维 CAD 模型,采用凸边分解并经由基面匹配算法从特征库中检索出相应的制造特征,并在此基础上利用 CAD 模型的几何面信息自动计算出制造特征的定位坐标系和定形参数,同时依据前驱工序模型对定位坐标系和定形参数值进行修正。最后,给定刀具半径和加工余量值,实现加工元体的定位和实例化,并与前驱工序模型做布尔运算,生成三维中间工序模型。在实验部分,以某机加零件为例,对提出方法的有效性进行了实例验证。
為瞭在三維 CAPP 繫統中展現產品零件由毛坯狀態嚮最終成品動態縯變的過程,提齣瞭一種以加工元體為基本單元的三維工序模型構建方法。首先,提齣瞭製造特徵及加工元體的錶達方法,建立瞭屬性鄰接圖、製造特徵體與加工元體的關聯關繫,對製造特徵庫進行瞭構建。接著,對于待加工三維 CAD 模型,採用凸邊分解併經由基麵匹配算法從特徵庫中檢索齣相應的製造特徵,併在此基礎上利用 CAD 模型的幾何麵信息自動計算齣製造特徵的定位坐標繫和定形參數,同時依據前驅工序模型對定位坐標繫和定形參數值進行脩正。最後,給定刀具半徑和加工餘量值,實現加工元體的定位和實例化,併與前驅工序模型做佈爾運算,生成三維中間工序模型。在實驗部分,以某機加零件為例,對提齣方法的有效性進行瞭實例驗證。
위료재삼유 CAPP 계통중전현산품령건유모배상태향최종성품동태연변적과정,제출료일충이가공원체위기본단원적삼유공서모형구건방법。수선,제출료제조특정급가공원체적표체방법,건립료속성린접도、제조특정체여가공원체적관련관계,대제조특정고진행료구건。접착,대우대가공삼유 CAD 모형,채용철변분해병경유기면필배산법종특정고중검색출상응적제조특정,병재차기출상이용 CAD 모형적궤하면신식자동계산출제조특정적정위좌표계화정형삼수,동시의거전구공서모형대정위좌표계화정형삼수치진행수정。최후,급정도구반경화가공여량치,실현가공원체적정위화실례화,병여전구공서모형주포이운산,생성삼유중간공서모형。재실험부분,이모궤가령건위례,대제출방법적유효성진행료실례험증。
The construction method mentioned in the title aims to exhibit in the 3D CAPP system how a product part transforms from its blank to its finished product. First, we propose the manufacturing feature and machining el?ement expression method and establish their relationship and manufacturing feature library. Then, we employ the convex decomposition algorithm and the base?face matching algorithm to extract the manufacturing features of the 3D CAD model. We then use the geometrical information of the CAD model to automatically calculate and calibrate their location coordinate system and size parameters and also use the precursor process model to correct them. In this way, given the cutter radius and the machining allowance value, the machining elements are located and in?stantiated. Finally, the 3D in?process model is generated by executing the Boolean operation of the machining ele?ments and the precursor process model. The experiments on the complicated product parts verify the effectiveness of the 3D process model construction method.