西北工业大学学报
西北工業大學學報
서북공업대학학보
JOURNAL OF NORTHWESTERN POLYTECHNICAL UNIVERSITY
2015年
4期
560-565
,共6页
龚志斌%李杰%蒋胜矩%张恒
龔誌斌%李傑%蔣勝矩%張恆
공지빈%리걸%장성구%장항
外吹式襟翼%动力增升%多块结构化网格%雷诺平均N-S方法,发动机位置
外吹式襟翼%動力增升%多塊結構化網格%雷諾平均N-S方法,髮動機位置
외취식금익%동력증승%다괴결구화망격%뢰낙평균N-S방법,발동궤위치
参照 C?17运输机,建立了外吹式襟翼动力增升全机几何分析模型。采用多块结构化网格技术,基于 RANS 方法,分别对高升力构型和轴对称发动机动力喷流进行了数值模拟验证,在此基础上开展了发动机短舱位置和喷流方位对动力增升效能的影响研究并总结其设计原则。计算结果表明,短舱垂直位置对动力增升效能影响最为显著,发动机每下沉100 mm 升力至少损失0.1。为获得理想的动力增升效果,发动机短舱应在避免巡航状态喷流直接冲刷机翼下表面的前提下尽可能地靠近机翼。发动机水平位置主要影响中等以上迎角的气动力特性,短舱前伸有利于喷流进入缝道并且存在兼顾最大升力系数和失速和缓特性的最佳前伸量。发动机负的安装角每增加1°,升力可增加0.1以上,适当给定负的发动机安装角可使得尾喷流向上倾斜从而被襟翼完全阻挡。通过改变发动机位置,在起到更好的动力增升效果的同时,通常都伴有低头力矩增大,压力中心后移,以至于全机安定性增加的同时平尾配平的负担也相应增加。
參照 C?17運輸機,建立瞭外吹式襟翼動力增升全機幾何分析模型。採用多塊結構化網格技術,基于 RANS 方法,分彆對高升力構型和軸對稱髮動機動力噴流進行瞭數值模擬驗證,在此基礎上開展瞭髮動機短艙位置和噴流方位對動力增升效能的影響研究併總結其設計原則。計算結果錶明,短艙垂直位置對動力增升效能影響最為顯著,髮動機每下沉100 mm 升力至少損失0.1。為穫得理想的動力增升效果,髮動機短艙應在避免巡航狀態噴流直接遲刷機翼下錶麵的前提下儘可能地靠近機翼。髮動機水平位置主要影響中等以上迎角的氣動力特性,短艙前伸有利于噴流進入縫道併且存在兼顧最大升力繫數和失速和緩特性的最佳前伸量。髮動機負的安裝角每增加1°,升力可增加0.1以上,適噹給定負的髮動機安裝角可使得尾噴流嚮上傾斜從而被襟翼完全阻擋。通過改變髮動機位置,在起到更好的動力增升效果的同時,通常都伴有低頭力矩增大,壓力中心後移,以至于全機安定性增加的同時平尾配平的負擔也相應增加。
삼조 C?17운수궤,건립료외취식금익동력증승전궤궤하분석모형。채용다괴결구화망격기술,기우 RANS 방법,분별대고승력구형화축대칭발동궤동력분류진행료수치모의험증,재차기출상개전료발동궤단창위치화분류방위대동력증승효능적영향연구병총결기설계원칙。계산결과표명,단창수직위치대동력증승효능영향최위현저,발동궤매하침100 mm 승력지소손실0.1。위획득이상적동력증승효과,발동궤단창응재피면순항상태분류직접충쇄궤익하표면적전제하진가능지고근궤익。발동궤수평위치주요영향중등이상영각적기동력특성,단창전신유리우분류진입봉도병차존재겸고최대승력계수화실속화완특성적최가전신량。발동궤부적안장각매증가1°,승력가증가0.1이상,괄당급정부적발동궤안장각가사득미분류향상경사종이피금익완전조당。통과개변발동궤위치,재기도경호적동력증승효과적동시,통상도반유저두력구증대,압력중심후이,이지우전궤안정성증가적동시평미배평적부담야상응증가。
Taking C?17 transport as reference, we construct powered high?lift transport configuration with externally blowing flap (EBF). Based upon multi?block structured grid techniques and RANS methods, numerical validations are carried out on a high?lift model as well as an axisymmetric fan?jet engine model. Then the influences of engine positions on powered high?lift efficiency are investigated and the design rules for engine positions are summarized. Results and their analysis show preliminarily that the vertical positions of the engines are the primary factors for high?lift. For every 100mm drop of nacelles, the lift coefficients will reduce more than 0. 1. The nacelles should be installed as close as possible to the wing to obtain ideal high lift while making sure that the jet flow does not impinge directly on lower wing surfaces at high speed cruise conditions. The horizontal positions of the nacelles mainly affect the aerodynamics above medium flow angle. The jet flow can get through the flap slots more easily with the engines placed more forward and the optimum horizontal positions exit considering both the maximum lift and stall proper?ties. The lift coefficients will increase above 0. 1 for every 1 degree increase of the negative nacelle installation an?gle. Moderate negative engine installation angle contributes to the powered high?lift effects by making the jet flow deflect upward and be totally blocked by the flaps. When changing the engine positions for better high?lift effects, the pitching moment will always be larger, which means that the aerodynamic center will move backward and longi?tude trim and stability problems may be severer.