计算机工程与设计
計算機工程與設計
계산궤공정여설계
COMPUTER ENGINEERING AND DESIGN
2015年
8期
2234-2238
,共5页
多目标聚类%局部集成%克隆选择%聚类类数%种群进化
多目標聚類%跼部集成%剋隆選擇%聚類類數%種群進化
다목표취류%국부집성%극륭선택%취류류수%충군진화
multi-obj ective clustering%local ensemble%clone selection%number of clusters%population evolution
多目标聚类过程中会产生一些明显不合理的解,影响最终划分结果以及聚类类数的判断。为此,提出一种基于局部集成和克隆选择的多目标聚类算法。在聚类过程中周期性的将聚类解集划分为若干邻域,对每个邻域进行局部集成操作,剔除各个类数下的不合理划分;利用克隆选择算法的思想构建3种变异算子,推动种群的进化,分别具有增大或减小当前解的聚类类数、调整当前解样本划分情况的功能。3组人工数据集以及3组 UCI 数据集的实验结果表明,该算法能够得到优于对比算法的聚类结果,准确判断出合理的聚类类数,判断类数的准确率可提高0%~46.67%。
多目標聚類過程中會產生一些明顯不閤理的解,影響最終劃分結果以及聚類類數的判斷。為此,提齣一種基于跼部集成和剋隆選擇的多目標聚類算法。在聚類過程中週期性的將聚類解集劃分為若榦鄰域,對每箇鄰域進行跼部集成操作,剔除各箇類數下的不閤理劃分;利用剋隆選擇算法的思想構建3種變異算子,推動種群的進化,分彆具有增大或減小噹前解的聚類類數、調整噹前解樣本劃分情況的功能。3組人工數據集以及3組 UCI 數據集的實驗結果錶明,該算法能夠得到優于對比算法的聚類結果,準確判斷齣閤理的聚類類數,判斷類數的準確率可提高0%~46.67%。
다목표취류과정중회산생일사명현불합리적해,영향최종화분결과이급취류류수적판단。위차,제출일충기우국부집성화극륭선택적다목표취류산법。재취류과정중주기성적장취류해집화분위약간린역,대매개린역진행국부집성조작,척제각개류수하적불합리화분;이용극륭선택산법적사상구건3충변이산자,추동충군적진화,분별구유증대혹감소당전해적취류류수、조정당전해양본화분정황적공능。3조인공수거집이급3조 UCI 수거집적실험결과표명,해산법능구득도우우대비산법적취류결과,준학판단출합리적취류류수,판단류수적준학솔가제고0%~46.67%。
A few obviously infeasible solutions usually exist in multi-objective clustering,which is harmful for selecting the best solution and identifying the number of clusters.Hence,a multi-objective clustering algorithm based on local ensemble and clone selection was proposed.The solution set was periodically divided to several neighboring subsets and then local ensemble was made on each of them.In this way,these infeasible solutions with different numbers of clusters were removed from current solu-tion set.Besides,three mutation operators were designed for clone selection to improve the evolution process.Results of experi-ments on three synthetic and three UCI datasets show that the proposed algorithm obtains better clustering results than other al-gorithms and determines the right number of clusters most of the time,and the accuracy of determination is promoted by 0%-4 6.6 7%.