计算机工程与设计
計算機工程與設計
계산궤공정여설계
COMPUTER ENGINEERING AND DESIGN
2015年
8期
2021-2025,2032
,共6页
刘亮%江汉红%王洁%芮万智
劉亮%江漢紅%王潔%芮萬智
류량%강한홍%왕길%예만지
网络流量%预测%小波分析%自回归滑动平均%支持向量回归机%近似信号%细节信号
網絡流量%預測%小波分析%自迴歸滑動平均%支持嚮量迴歸機%近似信號%細節信號
망락류량%예측%소파분석%자회귀활동평균%지지향량회귀궤%근사신호%세절신호
network traffic%prediction%wavelet analysis%ARMA%SVR%approximate signal%detail signal
为提高网络流量预测精度,采用一种基于小波分析理论的预测模型。通过将网络流量分成多个高频的细节信号和一个低频的近似信号之和,分别采用 ARMA模型和 SVR模型对细节信号和近似信号进行预测,将各部分的预测结果进行线性组合,得到最终的预测结果,在确保近似信号拟合精度的同时,避免细节信号的过拟合。将该模型和其它预测模型的预测误差进行仿真对比分析,分析结果表明,该算法能有效改善网络预测模型精度。
為提高網絡流量預測精度,採用一種基于小波分析理論的預測模型。通過將網絡流量分成多箇高頻的細節信號和一箇低頻的近似信號之和,分彆採用 ARMA模型和 SVR模型對細節信號和近似信號進行預測,將各部分的預測結果進行線性組閤,得到最終的預測結果,在確保近似信號擬閤精度的同時,避免細節信號的過擬閤。將該模型和其它預測模型的預測誤差進行倣真對比分析,分析結果錶明,該算法能有效改善網絡預測模型精度。
위제고망락류량예측정도,채용일충기우소파분석이론적예측모형。통과장망락류량분성다개고빈적세절신호화일개저빈적근사신호지화,분별채용 ARMA모형화 SVR모형대세절신호화근사신호진행예측,장각부분적예측결과진행선성조합,득도최종적예측결과,재학보근사신호의합정도적동시,피면세절신호적과의합。장해모형화기타예측모형적예측오차진행방진대비분석,분석결과표명,해산법능유효개선망락예측모형정도。
Aiming at improving the prediction accuracy of network traffic,a prediction model based on wavelet analysis was es-tablished.The traffic signal was divided into several detail ones of high frequency and an approximate one of low frequency,and they were predicated separately using autoregressive moving average (ARMA)and support vector machine (SVR)methods. These prediction results were combined linearly to obtain the final prediction traffic.In this way,the method ensures the fitting accuracy of the approximate signal and avoids over-fitting phenomenon of the detail signals.Compared with other prediction methods,the results of contrastive simulations show that the algorithm can effectively improve the prediction accuracy of net-work traffic.