计算机工程与应用
計算機工程與應用
계산궤공정여응용
COMPUTER ENGINEERING AND APPLICATIONS
2015年
16期
171-177
,共7页
CUDA架构%高光谱遥感影像%光谱角填图%常量存储器%共享存储器%存储器合并访问
CUDA架構%高光譜遙感影像%光譜角填圖%常量存儲器%共享存儲器%存儲器閤併訪問
CUDA가구%고광보요감영상%광보각전도%상량존저기%공향존저기%존저기합병방문
CUDA%hyperspectral remote sensing image%spectral angle mapping%constant memory%shared memory%merged accessing of memory
针对高光谱遥感影像分类的并行化处理,现有研究一般是通过集群和工作站来开展,成本较高,部署困难。少数基于GPU方式的研究主要是从流程的角度来论证该并行架构对提高算法效率的有效性,对于算法关键的存储器优化策略等研究相对较少或不详细。针对现有研究的不足,以CUDA架构下高光谱遥感影像的光谱波形匹配法和光谱角填图法分类的高性能计算为例,对算法存储优化策略进行重点研究,深入探讨了一系列存储优化及其改进方法。通过实验论证分析表明:存储优化策略及其改进方法有效,并且对于多种不同尺寸与数据量的影像,CUDA架构下算法的运行效率都有了较为显著的提升。同时,基于CUDA的高光谱影像分类维护了计算结果的准确性。
針對高光譜遙感影像分類的併行化處理,現有研究一般是通過集群和工作站來開展,成本較高,部署睏難。少數基于GPU方式的研究主要是從流程的角度來論證該併行架構對提高算法效率的有效性,對于算法關鍵的存儲器優化策略等研究相對較少或不詳細。針對現有研究的不足,以CUDA架構下高光譜遙感影像的光譜波形匹配法和光譜角填圖法分類的高性能計算為例,對算法存儲優化策略進行重點研究,深入探討瞭一繫列存儲優化及其改進方法。通過實驗論證分析錶明:存儲優化策略及其改進方法有效,併且對于多種不同呎吋與數據量的影像,CUDA架構下算法的運行效率都有瞭較為顯著的提升。同時,基于CUDA的高光譜影像分類維護瞭計算結果的準確性。
침대고광보요감영상분류적병행화처리,현유연구일반시통과집군화공작참래개전,성본교고,부서곤난。소수기우GPU방식적연구주요시종류정적각도래론증해병행가구대제고산법효솔적유효성,대우산법관건적존저기우화책략등연구상대교소혹불상세。침대현유연구적불족,이CUDA가구하고광보요감영상적광보파형필배법화광보각전도법분류적고성능계산위례,대산법존저우화책략진행중점연구,심입탐토료일계렬존저우화급기개진방법。통과실험론증분석표명:존저우화책략급기개진방법유효,병차대우다충불동척촌여수거량적영상,CUDA가구하산법적운행효솔도유료교위현저적제승。동시,기우CUDA적고광보영상분류유호료계산결과적준학성。
Aiming at the parallel processing of remote sensing image classification, the existing researches are generally carried out through computer cluster and workstation. These ways have the disadvantage of high cost and are difficult to establish. Only a few researches which are based on GPU mainly intend to demonstrate the availability of this parallel architecture from the perspective of workflow and pay little attention to the significant storage optimization strategies. Directed against the shortages of the existing studies, taking the high performance computing of hyperspectral image clas-sification using the method of spectrum waveform matching and spectral angle mapping based on CUDA for example, this paper places emphasis on researching the optimization strategies of GPU storage and their improvement method. The experimental results show that, the optimization strategies of GPU storage and their improvements are effective, besides, for a variety of images of different sizes and data volume, the efficiency of algorithm has been promoted remarkably com-pared with the situation before these strategies are applied. At the same time, The hyperspectral image classification based on CUDA acquires accurate computing results.