组合机床与自动化加工技术
組閤機床與自動化加工技術
조합궤상여자동화가공기술
MODULAR MACHINE TOOL & AUTOMATIC MANUFACTURING TECHNIQUE
2015年
8期
93-96
,共4页
吴文嘉%王军%张辉杰%孙军
吳文嘉%王軍%張輝傑%孫軍
오문가%왕군%장휘걸%손군
镗铣加工中心%热-结构耦合%小波神经网络%热误差预测
鏜鐉加工中心%熱-結構耦閤%小波神經網絡%熱誤差預測
당선가공중심%열-결구우합%소파신경망락%열오차예측
boring-milling machining center%thermal-structure coupling%wavelet neural network%thermal error prediction
以TX1600 G镗铣加工中心镗削系统主轴部件为研究对象,针对其热误差问题,提出一种基于小波神经网络的预测方法。首先根据镗铣加工中心主轴部件的结构特点建立其有限元模型,基于该模型进行热-结构耦合分析,进而选取热关键点并获取其样本数据;然后利用小波神经网络建立主轴热误差预测模型,并与BP神经网络预测结果相对比;最后结果表明小波神经网络预测精度高,为该加工中心的主轴热误差预测提供了理论依据,该方法同样适用于其它主轴热误差的前期预测。
以TX1600 G鏜鐉加工中心鏜削繫統主軸部件為研究對象,針對其熱誤差問題,提齣一種基于小波神經網絡的預測方法。首先根據鏜鐉加工中心主軸部件的結構特點建立其有限元模型,基于該模型進行熱-結構耦閤分析,進而選取熱關鍵點併穫取其樣本數據;然後利用小波神經網絡建立主軸熱誤差預測模型,併與BP神經網絡預測結果相對比;最後結果錶明小波神經網絡預測精度高,為該加工中心的主軸熱誤差預測提供瞭理論依據,該方法同樣適用于其它主軸熱誤差的前期預測。
이TX1600 G당선가공중심당삭계통주축부건위연구대상,침대기열오차문제,제출일충기우소파신경망락적예측방법。수선근거당선가공중심주축부건적결구특점건립기유한원모형,기우해모형진행열-결구우합분석,진이선취열관건점병획취기양본수거;연후이용소파신경망락건립주축열오차예측모형,병여BP신경망락예측결과상대비;최후결과표명소파신경망락예측정도고,위해가공중심적주축열오차예측제공료이론의거,해방법동양괄용우기타주축열오차적전기예측。
Taking the boring spindle system of TX1600G boring-milling machining center as the research ob-ject, a wavelet neural network-based prediction method is proposed to solve the thermal error problem. First-ly a finite element model of the spindle is established according to the structural characteristics of the boring-milling machining center, thus the thermal key points are selected and the sample data are obtained after the thermal-structure coupling analysis is processed based on the model above; secondly, with the method of wavelet neural network, the prediction model of spindle thermal error is built up, which compared with the prediction results of BP neural network;finally, the results indicate that the prediction based on wavelet neu-ral network is of higher precision, which provides a theory evidence for the thermal error prediction of the machining center spindle and this method is also applicable to what predicts the spindle error of other types.