计算机工程与应用
計算機工程與應用
계산궤공정여응용
COMPUTER ENGINEERING AND APPLICATIONS
2015年
16期
151-155,233
,共6页
崔小青%吴晓红%何小海%季成涛%任超
崔小青%吳曉紅%何小海%季成濤%任超
최소청%오효홍%하소해%계성도%임초
图像插值%几何对偶性%普通最小二乘%非局部均方%加权最小二乘%核岭回归
圖像插值%幾何對偶性%普通最小二乘%非跼部均方%加權最小二乘%覈嶺迴歸
도상삽치%궤하대우성%보통최소이승%비국부균방%가권최소이승%핵령회귀
image interpolation%geometric duality%ordinary least square%non-local mean square%weighted least square%kernel ridge regression
为了更好地保护图像的局部结构和提高图像插值算法的鲁棒性,结合基于几何对偶性的普通最小二乘和基于非局部均方的加权最小二乘来统计稳态区域形态,并基于该模型提出了一种改进的图像插值算法。算法首先采用非局部均方估计加权最小二乘模型系数,同时用核岭回归作为正则化项进行系数修正,考虑到核岭回归的有偏性,将基于边缘的普通最小二乘模型作为正则化项引进图像插值算法中,并对正则化参数进行自适应调整。与采用单一回归分析的插值算法相比较,该算法不但有效抑制了插值图像的边缘模糊和锯齿现象,而且插值结果具有较高的峰值信噪比和结构相似度。
為瞭更好地保護圖像的跼部結構和提高圖像插值算法的魯棒性,結閤基于幾何對偶性的普通最小二乘和基于非跼部均方的加權最小二乘來統計穩態區域形態,併基于該模型提齣瞭一種改進的圖像插值算法。算法首先採用非跼部均方估計加權最小二乘模型繫數,同時用覈嶺迴歸作為正則化項進行繫數脩正,攷慮到覈嶺迴歸的有偏性,將基于邊緣的普通最小二乘模型作為正則化項引進圖像插值算法中,併對正則化參數進行自適應調整。與採用單一迴歸分析的插值算法相比較,該算法不但有效抑製瞭插值圖像的邊緣模糊和鋸齒現象,而且插值結果具有較高的峰值信譟比和結構相似度。
위료경호지보호도상적국부결구화제고도상삽치산법적로봉성,결합기우궤하대우성적보통최소이승화기우비국부균방적가권최소이승래통계은태구역형태,병기우해모형제출료일충개진적도상삽치산법。산법수선채용비국부균방고계가권최소이승모형계수,동시용핵령회귀작위정칙화항진행계수수정,고필도핵령회귀적유편성,장기우변연적보통최소이승모형작위정칙화항인진도상삽치산법중,병대정칙화삼수진행자괄응조정。여채용단일회귀분석적삽치산법상비교,해산법불단유효억제료삽치도상적변연모호화거치현상,이차삽치결과구유교고적봉치신조비화결구상사도。
In order to protect the local structure of images better and improve the robustness of image interpolation algorithm, an improved image interpolation algorithm is proposed. It is based on a model that combines ordinary least squares based geometric duality and weighted least squares based non-local mean squares to form the steady-state region. Firstly, coeffi-cients of weighted least square are estimated by non-local mean, and then are corrected by kernel ridge regression. Taking into account the bias of kernel ridge regression, ordinary least square is introduced as a regular term. The regularization parameters are adjusted adaptively. Compared with the algorithm with ordinary least squares or weighted least squares, the algorithm suppresses the interpolation artifacts effectively, and the results of image interpolation have higher peak signal to noise ratio and structural similarity.