华南师范大学学报(自然科学版)
華南師範大學學報(自然科學版)
화남사범대학학보(자연과학판)
JOURNAL OF SOUTH CHINA NORMAL UNIVERSITY (NATURAL SCIENCE EDITION)
2015年
4期
30-34
,共5页
杨剑鑫%史可樟%李锡均%郑嘉鹏%史萌%蔡祥%朱德斌%邢晓波
楊劍鑫%史可樟%李錫均%鄭嘉鵬%史萌%蔡祥%硃德斌%邢曉波
양검흠%사가장%리석균%정가붕%사맹%채상%주덕빈%형효파
氧化石墨烯%微纳光纤%微加热器%光热效应%光热微泡
氧化石墨烯%微納光纖%微加熱器%光熱效應%光熱微泡
양화석묵희%미납광섬%미가열기%광열효응%광열미포
graphene oxide ( GO)%micro-nano fiber ( MNF)%microheater%photothermal effect%microbubbles
利用近红外光在微纳光纤传输时产生的强烈倏逝场效应将氧化石墨烯沉积在微纳光纤表面,组装成具有优异光热转换性能的氧化石墨烯-微纳光纤,得到一种新型的光驱动微加热器。通入较小功率的近红外光,微加热器能诱导各种液体(例如N,N-二甲基甲酰胺、去离子水)产生高温相变进而产生微泡,显示了良好的光热转换效应。结果表明,在N,N-二甲基甲酰胺中,微泡按一定周期循环生长,重复搅动液体。在微流芯片中,这些微泡可用于操控微纳米颗粒、微纳米线等。在去离子水中,产生的微泡结构稳定、不易破裂,可用于聚集微粒等。该微加热器具有制备简单、尺寸小、损耗低、激发功率小、效率高等优良特性,在微机电系统、微流控芯片等领域具有良好的应用前景。
利用近紅外光在微納光纖傳輸時產生的彊烈倏逝場效應將氧化石墨烯沉積在微納光纖錶麵,組裝成具有優異光熱轉換性能的氧化石墨烯-微納光纖,得到一種新型的光驅動微加熱器。通入較小功率的近紅外光,微加熱器能誘導各種液體(例如N,N-二甲基甲酰胺、去離子水)產生高溫相變進而產生微泡,顯示瞭良好的光熱轉換效應。結果錶明,在N,N-二甲基甲酰胺中,微泡按一定週期循環生長,重複攪動液體。在微流芯片中,這些微泡可用于操控微納米顆粒、微納米線等。在去離子水中,產生的微泡結構穩定、不易破裂,可用于聚集微粒等。該微加熱器具有製備簡單、呎吋小、損耗低、激髮功率小、效率高等優良特性,在微機電繫統、微流控芯片等領域具有良好的應用前景。
이용근홍외광재미납광섬전수시산생적강렬숙서장효응장양화석묵희침적재미납광섬표면,조장성구유우이광열전환성능적양화석묵희-미납광섬,득도일충신형적광구동미가열기。통입교소공솔적근홍외광,미가열기능유도각충액체(례여N,N-이갑기갑선알、거리자수)산생고온상변진이산생미포,현시료량호적광열전환효응。결과표명,재N,N-이갑기갑선알중,미포안일정주기순배생장,중복교동액체。재미류심편중,저사미포가용우조공미납미과립、미납미선등。재거리자수중,산생적미포결구은정、불역파렬,가용우취집미립등。해미가열기구유제비간단、척촌소、손모저、격발공솔소、효솔고등우량특성,재미궤전계통、미류공심편등영역구유량호적응용전경。
An optical technique is developed by depositing graphene oxide ( GO) onto a micro/nanofiber ( MNF) , which can act as a novel light-driven microheater based on the strong evanescent field from MNF and the photother-mal property of GO.Excited by the low-power near-infrared light, GO-MNF is capable of initiating the phase transi-tion of surrounding solvent ( such as N,N-dimethylformamide, deionized water) to generate photothermal microbub-bles.As a result, in the N,N-dimethylformamide, the microbubbles grows in a certain cycle, and stirs the liquid repeated.In the microfluidic chip, the microbubbles can manipulate micro/nano particles and wires.In the deion-ized water, the microbubble is stable and not easy to break, which can be used to gather particles.The microheater has the superiorities of easy fabrication, small size, low loss, low excitation power, and high efficiency, which would have prospective applications in micro-electromechanical systems, lab-on-a-chip, and other techniques.