农业科学学报(英文版)
農業科學學報(英文版)
농업과학학보(영문판)
NONGYEKEXUEXUEBAO
2015年
7期
1321-1331
,共11页
1-MCP%ethylene%membrane leakage%lipid peroxidation%chlorophyl lfuorescence%total soluble sugar
Cotton (Gossypium hirsutum L.) plants produce more ethylene when subjected to abiotic stresses, such as high temperatures and drought, which result in premature leaf senescence, reduced photosynthetic efifciency, and thus decreased yield. This study was conducted to test the hypothesis that the ethylene-inhibiting compound 1-methylcyclopropene (1-MCP) treatment of cotton plants can delay leaf senescence under high temperature, drought, and the aging process in control ed environ-mental conditions. Potted cotton plants were exposed to 1-MCP treatment at the early square stage of development. The protective effect of 1-MCP against membrane damage was found on older compared to younger leaves, indicating 1-MCP could lower the stress level caused by aging. Application of 1-MCP resulted in reduction of lipid peroxidation, membrane leakage, soluble sugar content, and increased chlorophyl content, in contrast to the untreated plants under heat stress, suggesting that 1-MCP treatment of cotton plants may also have the potential to reduce the effect of heat stress in terms of delayed senescence. Application of 1-MCP caused reductions of lipid peroxidation, membrane leakage, and soluble sugar content, together with increases in water use efifciency (WUE), water potential, chlorophyl content, and lfuorescence quantum efifciency, compared to the untreated plants under drought, suggesting that 1-MCP treatment of cotton plants may also have the ability to reduce the level of stress under drought conditions. In conclusion, 1-MCP treatment of cotton should have the potential to delay senescence under heat and drought stress, and the aging process. Additional y, 1-MCP is more effective under stress than under non-stress conditions.