化学传感器
化學傳感器
화학전감기
CHEMICAL SENSORS
2015年
2期
43-49
,共7页
郭冬梅%冉佩瑶%王庆红%许娟娟%傅英姿
郭鼕梅%冉珮瑤%王慶紅%許娟娟%傅英姿
곽동매%염패요%왕경홍%허연연%부영자
手性识别%多巴对映体%巯基-β-环糊精%石墨烯%电沉积纳米金
手性識彆%多巴對映體%巰基-β-環糊精%石墨烯%電沉積納米金
수성식별%다파대영체%구기-β-배호정%석묵희%전침적납미금
chiral recognition%DOPA enantiomers%thiolatedβ-cyclodextrin%graphene%gold nanoparticles
利用氨基化离子液体修饰的氧化石墨烯(IL-rGO)、电沉积纳米金(dpAu)和巯基-β-环糊精(β-CD-SH)构建手性传感界面,并采用差分脉冲伏安法(DPV)研究该传感界面对多巴对映体的手性识别。其中,氨基化离子液体修饰的氧化石墨烯和电沉积纳米金能有效促进电子的传递,催化多巴的氧化还原反应;而巯基-β-环糊精作手性选择剂,识别多巴对映异构体。实验发现,D-多巴在传感界面的电流响应信号明显大于L-多巴,且峰电流差值达到88μA,说明研制的传感体系与D-多巴的作用更强。在1.0×10-5 mol/L至5.0×10-3 mol/L 浓度范围内, D-多巴和L-多巴的峰电流与其浓度呈线性响应,检出限分别为2.1×10-6 mol/L 和3.3×10-6 mol/L(S/N=3)。该传感器制备简单、响应快速、检测灵敏,可用于手性化合物的识别研究。
利用氨基化離子液體脩飾的氧化石墨烯(IL-rGO)、電沉積納米金(dpAu)和巰基-β-環糊精(β-CD-SH)構建手性傳感界麵,併採用差分脈遲伏安法(DPV)研究該傳感界麵對多巴對映體的手性識彆。其中,氨基化離子液體脩飾的氧化石墨烯和電沉積納米金能有效促進電子的傳遞,催化多巴的氧化還原反應;而巰基-β-環糊精作手性選擇劑,識彆多巴對映異構體。實驗髮現,D-多巴在傳感界麵的電流響應信號明顯大于L-多巴,且峰電流差值達到88μA,說明研製的傳感體繫與D-多巴的作用更彊。在1.0×10-5 mol/L至5.0×10-3 mol/L 濃度範圍內, D-多巴和L-多巴的峰電流與其濃度呈線性響應,檢齣限分彆為2.1×10-6 mol/L 和3.3×10-6 mol/L(S/N=3)。該傳感器製備簡單、響應快速、檢測靈敏,可用于手性化閤物的識彆研究。
이용안기화리자액체수식적양화석묵희(IL-rGO)、전침적납미금(dpAu)화구기-β-배호정(β-CD-SH)구건수성전감계면,병채용차분맥충복안법(DPV)연구해전감계면대다파대영체적수성식별。기중,안기화리자액체수식적양화석묵희화전침적납미금능유효촉진전자적전체,최화다파적양화환원반응;이구기-β-배호정작수성선택제,식별다파대영이구체。실험발현,D-다파재전감계면적전류향응신호명현대우L-다파,차봉전류차치체도88μA,설명연제적전감체계여D-다파적작용경강。재1.0×10-5 mol/L지5.0×10-3 mol/L 농도범위내, D-다파화L-다파적봉전류여기농도정선성향응,검출한분별위2.1×10-6 mol/L 화3.3×10-6 mol/L(S/N=3)。해전감기제비간단、향응쾌속、검측령민,가용우수성화합물적식별연구。
A chiral sensing interface was fabricated by ionic liquid reduced graphene oxide (IL-rGO), electrodepo-sition of gold nanoparticles (dpAu), and thiolatedβ-cyclodextrin (β-CD-SH). Differential pulse voltammetry (DPV) was used to investigated the stereoselectivity of sensing interface to 3,4-dihydroxyphenylalanine (DOPA) enan-tiomers. Both ionic liquid reduced graphene oxide and gold nanoparticles could facilitate the electron transfer and accelerate the redox process of DOPA. As a chiral selector, thiolatedβ-cyclodextrin could distinguish between D-DOPA and L-DOPA. So a larger peak current of D-DOPA had been obtained on the sensing platform, and the peak current difference was 88μA. The results demonstrated that the sensing interface had a stronger interaction with D-DOPA than L-DOPA. Under the optimum conditions, D-DOPA and L-DOPA presented a detection limit of 2.1μmol/L and 3.3μmol/L (S/N=3), with a linear range of 1.0×10-5 mol/L to 5.0×10-3 mol/L. This proposed sensor could be used to discriminate chiral compounds with the advantages of simple operation, rapid detection, sensitive re-sponse.