装备环境工程
裝備環境工程
장비배경공정
EQUIPMENT ENVIRONMENTAL ENGINEERING
2015年
4期
154-159
,共6页
四轴流风机%无刷直流电机%失效%失效机理
四軸流風機%無刷直流電機%失效%失效機理
사축류풍궤%무쇄직류전궤%실효%실효궤리
axial fan%BLDC%failure%failure mechanism
目的:研究分析风机低温失效的问题。方法通过研究目前市场上及工程中常用的轴流风机驱动的机电模式及结构形式,分析正常产品驱动电路板的组成,采用替换法,并结合目前装备所处的环境条件综合分析。结果微型轴流风机的润滑油在长期低温储存后发生凝冻转动阻力增大,结合轴承的一种特定失效模式,低温加剧了这一模式的进行的速度,使得转子的转动阻力增大进一步恶化。在加电启动时,由于低温时电路的阻抗小,直流无刷电机的堵转电流较常温时增大约2倍以上,从而导致电机驱动电路烧毁。同时由于电机堵转,电机铁芯热损增大,长期堵转后进一步导致线圈漆包线漆皮的烧毁,直至风机电机彻底烧毁。结论与通常认为低温下出现失效的情况很少相反,低温状态下,由于润滑油的凝冻,轴承可能加速失效,可使风机在低温存储后的一次启动或多次启动中出现烧毁现象。
目的:研究分析風機低溫失效的問題。方法通過研究目前市場上及工程中常用的軸流風機驅動的機電模式及結構形式,分析正常產品驅動電路闆的組成,採用替換法,併結閤目前裝備所處的環境條件綜閤分析。結果微型軸流風機的潤滑油在長期低溫儲存後髮生凝凍轉動阻力增大,結閤軸承的一種特定失效模式,低溫加劇瞭這一模式的進行的速度,使得轉子的轉動阻力增大進一步噁化。在加電啟動時,由于低溫時電路的阻抗小,直流無刷電機的堵轉電流較常溫時增大約2倍以上,從而導緻電機驅動電路燒燬。同時由于電機堵轉,電機鐵芯熱損增大,長期堵轉後進一步導緻線圈漆包線漆皮的燒燬,直至風機電機徹底燒燬。結論與通常認為低溫下齣現失效的情況很少相反,低溫狀態下,由于潤滑油的凝凍,軸承可能加速失效,可使風機在低溫存儲後的一次啟動或多次啟動中齣現燒燬現象。
목적:연구분석풍궤저온실효적문제。방법통과연구목전시장상급공정중상용적축류풍궤구동적궤전모식급결구형식,분석정상산품구동전로판적조성,채용체환법,병결합목전장비소처적배경조건종합분석。결과미형축류풍궤적윤활유재장기저온저존후발생응동전동조력증대,결합축승적일충특정실효모식,저온가극료저일모식적진행적속도,사득전자적전동조력증대진일보악화。재가전계동시,유우저온시전로적조항소,직류무쇄전궤적도전전류교상온시증대약2배이상,종이도치전궤구동전로소훼。동시유우전궤도전,전궤철심열손증대,장기도전후진일보도치선권칠포선칠피적소훼,직지풍궤전궤철저소훼。결론여통상인위저온하출현실효적정황흔소상반,저온상태하,유우윤활유적응동,축승가능가속실효,가사풍궤재저온존저후적일차계동혹다차계동중출현소훼현상。
ABSTRACT:Objective To study the issue of failure of axial fan in low temperature. Methods Through research of the mechanical structure and the driver's circuit system of the typical axial fan in the market and commonly used in engineering, the composition of the diver circuit board of normal products was analyzed. The integrated analysis was conducted on the failure issue in the current environmental conditions by replacement method. Results The rotary resistance of the micro axial fan increased due to congelation of lubricating oil after long-term storage in low temperature. In combination, the low temperature accelerated the special failure mechanism of the bearing, making the increase of the rotary resistance of the rotor even greater. In addition, during the electrical start-up process, compared to normal temperature, the locked-rotor current of the brushless DC motor (BLDC) increased by over 2 times due to the small resistance of circuit at low temperature, thus causing overburning of the motor driver circuit. Meanwhile, due to motor stalling, the heat damage of the motor iron increased and the long-term stalling further caused burning ofenamelled wire thus leading to the total burning of the fan motor. Conclusion In contrast to the general thought that failure at low temperature rarely appears, the burning situation of fan occurs during the process of one-time or multiple startup after storage in low temperature due to congelation of lubricating oil and acceleration failure of bearing.