原子能科学技术
原子能科學技術
원자능과학기술
ATOMIC ENERGY SCIENCE AND TECHNOLOGY
2015年
8期
1399-1404
,共6页
朱伟%李亚冰%佟立丽%曹学武
硃偉%李亞冰%佟立麗%曹學武
주위%리아빙%동립려%조학무
一回路卸压%氢气风险%严重事故缓解%自动卸压系统
一迴路卸壓%氫氣風險%嚴重事故緩解%自動卸壓繫統
일회로사압%경기풍험%엄중사고완해%자동사압계통
RCS depressurization%hydrogen risk%severe accident mitigation%automatic depressurization system
先进非能动压水堆设计采用自动卸压系统(ADS )对一回路进行卸压,严重事故下主控室可手动开启ADS ,缓解高压熔堆风险。然而ADS的设计特点可能导致氢气在局部隔间积聚,带来局部氢气风险。本文基于氢气负面效应考虑,对利用ADS进行一回路卸压的策略进行研究,为严重事故管理提供技术支持。选取全厂断电始发的典型高压熔堆严重事故序列,利用一体化事故分析程序,评估手动开启第1~4级ADS、手动开启第1~3级ADS、手动开启第4级ADS 3种方案的卸压效果,并分析一回路卸压对安全壳局部隔间的氢气负面影响。研究结果表明,3种卸压方案均能有效降低一回路压力。但在氢气点火器不可用时,开启第1~3级ADS以及开启第1~4级ADS卸压会引起内置换料水箱隔间氢气浓度迅速增加,可能导致局部氢气燃爆。因此,基于氢气风险考虑,建议在实施严重事故管理导则一回路卸压策略时优先考虑采用第4级ADS进行一回路卸压。
先進非能動壓水堆設計採用自動卸壓繫統(ADS )對一迴路進行卸壓,嚴重事故下主控室可手動開啟ADS ,緩解高壓鎔堆風險。然而ADS的設計特點可能導緻氫氣在跼部隔間積聚,帶來跼部氫氣風險。本文基于氫氣負麵效應攷慮,對利用ADS進行一迴路卸壓的策略進行研究,為嚴重事故管理提供技術支持。選取全廠斷電始髮的典型高壓鎔堆嚴重事故序列,利用一體化事故分析程序,評估手動開啟第1~4級ADS、手動開啟第1~3級ADS、手動開啟第4級ADS 3種方案的卸壓效果,併分析一迴路卸壓對安全殼跼部隔間的氫氣負麵影響。研究結果錶明,3種卸壓方案均能有效降低一迴路壓力。但在氫氣點火器不可用時,開啟第1~3級ADS以及開啟第1~4級ADS卸壓會引起內置換料水箱隔間氫氣濃度迅速增加,可能導緻跼部氫氣燃爆。因此,基于氫氣風險攷慮,建議在實施嚴重事故管理導則一迴路卸壓策略時優先攷慮採用第4級ADS進行一迴路卸壓。
선진비능동압수퇴설계채용자동사압계통(ADS )대일회로진행사압,엄중사고하주공실가수동개계ADS ,완해고압용퇴풍험。연이ADS적설계특점가능도치경기재국부격간적취,대래국부경기풍험。본문기우경기부면효응고필,대이용ADS진행일회로사압적책략진행연구,위엄중사고관리제공기술지지。선취전엄단전시발적전형고압용퇴엄중사고서렬,이용일체화사고분석정서,평고수동개계제1~4급ADS、수동개계제1~3급ADS、수동개계제4급ADS 3충방안적사압효과,병분석일회로사압대안전각국부격간적경기부면영향。연구결과표명,3충사압방안균능유효강저일회로압력。단재경기점화기불가용시,개계제1~3급ADS이급개계제1~4급ADS사압회인기내치환료수상격간경기농도신속증가,가능도치국부경기연폭。인차,기우경기풍험고필,건의재실시엄중사고관리도칙일회로사압책략시우선고필채용제4급ADS진행일회로사압。
For advanced passive pressurized water reactor ,the automatic depressuriza‐tion system (ADS ) can be applied to depressurize the reactor coolant system (RCS ) . T he main control room can manually open ADS to mitigate the risk of overpressure dur‐ing severe accidents .However ,the design characteristics of ADS may cause hydrogen releasing into the containment .Accumulating in the containment may cause hydrogen hazard in containment .Against this background ,the RCS depressurization strategy in severe accidents was analyzed and its negative impact standing from hydrogen risk to make suggestion to severe accident management was evaluated .The station black out accident was selected and analyzed with integral severe accident analysis code .Three different depressurization schemes were discussed on both depressurization effect and hydrogen risk .The hydrogen distribution and risk in different compartments were cal‐culated through severe accident analysis .The results show that all three schemes ana‐lyzed in this paper can depressurize the RCS effectively .However ,opening ADS stage 1‐3 causes immediate increase of hydrogen concentration in in‐containment refueling tank compartment if hydrogen igniters are unavailable and can cause hydrogen explosion that threatens containment integration .As a result ,the suggestion is made for severe acci‐dent management guideline w hich gives priority to ADS stage 4 w hen implementing RCS depressurization .