噪声与振动控制
譟聲與振動控製
조성여진동공제
NOISE AND VIBRATION CONTROL
2015年
4期
115-120
,共6页
振动与波%地铁%曲线地段%桩基础
振動與波%地鐵%麯線地段%樁基礎
진동여파%지철%곡선지단%장기출
vibration and wave%subway%curved segment%pile foundation
以南昌地铁1号线圆曲线(曲率半径为400 m)下穿南昌科技大楼段工程背景为依托,建立轨道—隧道—大地—科技楼三维有限元模型,从数值计算的角度分析地铁列车在曲地段运行时引起的环境振动对邻近建筑的影响。结果表明,曲线段地面的振动强度水平向接近竖向,这与直线地段主要以竖向振动为主的振动状态存在明显的差别;科技楼室内水平向振动强度低于竖向,第1层的振动在20 Hz出现最大值,其它各楼层均在6.3 Hz和16 Hz出现最大值,室内第1—8层竖向振动1/3倍频程均超过标准夜间限值,需要作隔振处理;无论在水平向还是在竖向,列车行驶速度越快,振动响应越大,竖向振动在楼层间的变化幅度要小于水平向,水平向的振动最大值出现在底层或顶层;建筑结构基础形式采用桩基础,增大其产生的阻尼、刚度、附加质量,可以减小地铁环境振动的干扰。
以南昌地鐵1號線圓麯線(麯率半徑為400 m)下穿南昌科技大樓段工程揹景為依託,建立軌道—隧道—大地—科技樓三維有限元模型,從數值計算的角度分析地鐵列車在麯地段運行時引起的環境振動對鄰近建築的影響。結果錶明,麯線段地麵的振動彊度水平嚮接近豎嚮,這與直線地段主要以豎嚮振動為主的振動狀態存在明顯的差彆;科技樓室內水平嚮振動彊度低于豎嚮,第1層的振動在20 Hz齣現最大值,其它各樓層均在6.3 Hz和16 Hz齣現最大值,室內第1—8層豎嚮振動1/3倍頻程均超過標準夜間限值,需要作隔振處理;無論在水平嚮還是在豎嚮,列車行駛速度越快,振動響應越大,豎嚮振動在樓層間的變化幅度要小于水平嚮,水平嚮的振動最大值齣現在底層或頂層;建築結構基礎形式採用樁基礎,增大其產生的阻尼、剛度、附加質量,可以減小地鐵環境振動的榦擾。
이남창지철1호선원곡선(곡솔반경위400 m)하천남창과기대루단공정배경위의탁,건립궤도—수도—대지—과기루삼유유한원모형,종수치계산적각도분석지철열차재곡지단운행시인기적배경진동대린근건축적영향。결과표명,곡선단지면적진동강도수평향접근수향,저여직선지단주요이수향진동위주적진동상태존재명현적차별;과기루실내수평향진동강도저우수향,제1층적진동재20 Hz출현최대치,기타각루층균재6.3 Hz화16 Hz출현최대치,실내제1—8층수향진동1/3배빈정균초과표준야간한치,수요작격진처리;무론재수평향환시재수향,열차행사속도월쾌,진동향응월대,수향진동재루층간적변화폭도요소우수평향,수평향적진동최대치출현재저층혹정층;건축결구기출형식채용장기출,증대기산생적조니、강도、부가질량,가이감소지철배경진동적간우。
Three-dimensional finite element model including rail, tunnel, soil ground and buildings was established for analysis of a curved segment of Nanchang Metro Line 1 with radius of curvature R=400 m, which passes through under the Nanchang Science and Technology Building. The impact induced by the curved segment vibration on adjacent buildings was analyzed. The result shows that the ground horizontal vibration level is close to the ground vertical vibration level in the vicinity of the curved segment. It is quite different from the vibration situation in straight line section where the vibration is mainly in vertical direction. Inside the Science and Technology Building, the horizontal vibration level is lower than the vertical one. In the first floor, vibration magnitude of the ground reaches the maximum at 20 Hz frequency. In the other floors, the maximum vibration magnitudes appear at the frequencies of 6.3 Hz and 16 Hz. The 1/3 octave of vertical vibration of the 1-8 th floors in the building exceed the standard limit value at night. So, vibration isolation measures are necessary. With the increasing of the speed of the train, the vibration response increases in both horizontal and vertical directions, the magnitude of vibration change in the vertical from 1st floor to 8th floors is less than that of the horizontal vibration change, and the maximum horizontal vibration level appears at the bottom floor or top floor. For the buildings with pile foundation, increasing damping, stiffness and additive mass can reduce the environmental vibration interference induced by the subway.