食品安全质量检测学报
食品安全質量檢測學報
식품안전질량검측학보
FOOD SAFETY AND QUALITY DETECTION TECHNOLOGY
2015年
8期
3026-3029
,共4页
李毛毛%郑喜群%任健%赵丽影%杨勇
李毛毛%鄭喜群%任健%趙麗影%楊勇
리모모%정희군%임건%조려영%양용
近红外光谱法%甜菜%糖度%偏最小二乘法
近紅外光譜法%甜菜%糖度%偏最小二乘法
근홍외광보법%첨채%당도%편최소이승법
near infrared spectroscopy%sugar beet%sugar content%partial least squares
目的:建立起近红外光谱技术关于甜菜糖度的最佳预测模型。方法研究了Savitzky-Golay平滑处理、Savitzky-Golay导数、均值中心化、差分求导、净分析信号、去趋势校正、标准正态变量变换和多元散射校正等8种预处理方法的多方法联用处理进行光谱数据的预处理,结合光谱波段优选,建立甜菜糖度与近红外光谱的预测模型。结果在进行模型的评价时,以误差均方根(SEP)、校正标准误差(SEC)与交叉检验误差(SECV)作为评价指标。结论发现经过光谱波段优选之后,结合 Savitzky-Golay 平滑、Savitzky-Golay 导数、去趋势校正及均值中心化进行光谱数据的预处理得到的模型效果最佳。
目的:建立起近紅外光譜技術關于甜菜糖度的最佳預測模型。方法研究瞭Savitzky-Golay平滑處理、Savitzky-Golay導數、均值中心化、差分求導、淨分析信號、去趨勢校正、標準正態變量變換和多元散射校正等8種預處理方法的多方法聯用處理進行光譜數據的預處理,結閤光譜波段優選,建立甜菜糖度與近紅外光譜的預測模型。結果在進行模型的評價時,以誤差均方根(SEP)、校正標準誤差(SEC)與交扠檢驗誤差(SECV)作為評價指標。結論髮現經過光譜波段優選之後,結閤 Savitzky-Golay 平滑、Savitzky-Golay 導數、去趨勢校正及均值中心化進行光譜數據的預處理得到的模型效果最佳。
목적:건립기근홍외광보기술관우첨채당도적최가예측모형。방법연구료Savitzky-Golay평활처리、Savitzky-Golay도수、균치중심화、차분구도、정분석신호、거추세교정、표준정태변량변환화다원산사교정등8충예처리방법적다방법련용처리진행광보수거적예처리,결합광보파단우선,건립첨채당도여근홍외광보적예측모형。결과재진행모형적평개시,이오차균방근(SEP)、교정표준오차(SEC)여교차검험오차(SECV)작위평개지표。결론발현경과광보파단우선지후,결합 Savitzky-Golay 평활、Savitzky-Golay 도수、거추세교정급균치중심화진행광보수거적예처리득도적모형효과최가。
Objective To establish the optimal forecast model of beet sugar content based on near-infrared spectroscopy. Methods Eight kinds of methods as Savitzky-Golay smoothing, Savitzky-Golay derivative, mean centering, differential derivative, net analytic signal, to the tendency calibration, standard normal variable transformations and multiplicative scatter correction were associated and combined with preferable spectral bands choice to build the beet sugar content and the near-infrared spectrum prediction model. Results SEP, SEC and SECV were set as the evaluation index when evaluating the models. Conclusion The results show after the preferred spectrum bands choice, the preprocessing that combines Savitzky-Golay smoothing, Savitzky-Golay derivative, to the trend correction and mean centering can obtain the optimal model.