食品安全质量检测学报
食品安全質量檢測學報
식품안전질량검측학보
FOOD SAFETY AND QUALITY DETECTION TECHNOLOGY
2015年
8期
2994-3001
,共8页
邢素霞%郭培源%向灵孜%梁超群
邢素霞%郭培源%嚮靈孜%樑超群
형소하%곽배원%향령자%량초군
鸡肉品质%近红外光谱%区间优化偏最小二乘法%脂肪%蛋白质
鷄肉品質%近紅外光譜%區間優化偏最小二乘法%脂肪%蛋白質
계육품질%근홍외광보%구간우화편최소이승법%지방%단백질
chicken quality%near infrared spectroscopy%interval partial least squares%fat%protein
目的:建立土鸡与肉鸡的蛋白质、脂肪含量快速预测模型。方法收集土鸡与肉鸡新鲜样本各30份,取其中各20份样品,应用近红外光谱分析技术和区间最小二乘法建立蛋白质、脂肪的定量分析模型;然后对剩余样品进行预测,并进行误差分析。结果土鸡与肉鸡的蛋白质模型相关系数分别是0.978和0.963,内部交叉验证均方差(RMSECV)分别为0.197和0.201;脂肪模型的相关系数分别为0.946和0.952, RMSECV值分别为0.318和0.149。预测中,蛋白质预测结果与实测结果误差平均为0.193和0.214,标准差为0.098和0.065;脂肪预测结果与实测结果的误差平均值分别为0.318和0.149,标准差分别为0.072和0.103。结论通过预测结果与实测结果比较,发现差异并不显著,标准方差在10%及以下,并且预测模型的相关系数越大,预测结果越准确,说明了近红外光谱技术与区间最小二乘法预测模型的可行性、准确性、快速便捷性,能够为市场土鸡肉与肉鸡肉的鉴别提供快捷有效的方法。同时,为提高预测结果的准确性,需采用尽量多的样品建立预测模型。
目的:建立土鷄與肉鷄的蛋白質、脂肪含量快速預測模型。方法收集土鷄與肉鷄新鮮樣本各30份,取其中各20份樣品,應用近紅外光譜分析技術和區間最小二乘法建立蛋白質、脂肪的定量分析模型;然後對剩餘樣品進行預測,併進行誤差分析。結果土鷄與肉鷄的蛋白質模型相關繫數分彆是0.978和0.963,內部交扠驗證均方差(RMSECV)分彆為0.197和0.201;脂肪模型的相關繫數分彆為0.946和0.952, RMSECV值分彆為0.318和0.149。預測中,蛋白質預測結果與實測結果誤差平均為0.193和0.214,標準差為0.098和0.065;脂肪預測結果與實測結果的誤差平均值分彆為0.318和0.149,標準差分彆為0.072和0.103。結論通過預測結果與實測結果比較,髮現差異併不顯著,標準方差在10%及以下,併且預測模型的相關繫數越大,預測結果越準確,說明瞭近紅外光譜技術與區間最小二乘法預測模型的可行性、準確性、快速便捷性,能夠為市場土鷄肉與肉鷄肉的鑒彆提供快捷有效的方法。同時,為提高預測結果的準確性,需採用儘量多的樣品建立預測模型。
목적:건립토계여육계적단백질、지방함량쾌속예측모형。방법수집토계여육계신선양본각30빈,취기중각20빈양품,응용근홍외광보분석기술화구간최소이승법건립단백질、지방적정량분석모형;연후대잉여양품진행예측,병진행오차분석。결과토계여육계적단백질모형상관계수분별시0.978화0.963,내부교차험증균방차(RMSECV)분별위0.197화0.201;지방모형적상관계수분별위0.946화0.952, RMSECV치분별위0.318화0.149。예측중,단백질예측결과여실측결과오차평균위0.193화0.214,표준차위0.098화0.065;지방예측결과여실측결과적오차평균치분별위0.318화0.149,표준차분별위0.072화0.103。결론통과예측결과여실측결과비교,발현차이병불현저,표준방차재10%급이하,병차예측모형적상관계수월대,예측결과월준학,설명료근홍외광보기술여구간최소이승법예측모형적가행성、준학성、쾌속편첩성,능구위시장토계육여육계육적감별제공쾌첩유효적방법。동시,위제고예측결과적준학성,수채용진량다적양품건립예측모형。
Objective To build a fast predictive model about protein and fat content of chicken and broilers. Methods Thirty fresh samples from both chicken and broilers were collected separately and 2 quantitative analysis models were built for determination of protein and fat content by using 20 samples of each. The remaining 20 samples were analyzed by predictive analytics and error analytics. Results The correlation coefficients of protein model with 2 kinds of chicken were 0.978 and 0.963 when RMSECV were 0.197 and 0.201 in the chicken and broilers protein model, respectively. As for the fat model, the correlation coefficients of 2 kinds of chicken were 0.946 and 0.952, and RMSECV were 0.318 and 0.149, respectively. It turned out to be that the mean errors of predicted and actual outcomes were 0.193 and 0.214, the standard deviations were 0.098 and 0.065 in protein’s case, respectively. And mean errors of predicated and actual outcomes were 0.318 and 0.149, the standard deviations were 0.072 and 0.103 in fat’s case, respectively. Conclusion From the compared results, the difference between predicted and actual results was not significant, and the standard deviation was 10%or lower. In addition, the larger the correlation coefficient of the prediction model, the more accurate the prediction results. At the same time, it showed that fast predictive models based on NIR analysis technique and the least square method can provide efficient feasible and accurate approaches to the identification of chicken and broilers. Then, it is necessary to collect more samples to built the prediction model for improve the accuracy of forecasting results.