粉末冶金工业
粉末冶金工業
분말야금공업
POWDER METALLURGY INDUSTRY
2015年
4期
20-24,25
,共6页
韩帅%赵麦群%王子逾%李少萌
韓帥%趙麥群%王子逾%李少萌
한수%조맥군%왕자유%리소맹
超音速气雾化%气体压力%Sn0.3Ag0.7Cu粉末%微观形貌%粒度分布%氧含量
超音速氣霧化%氣體壓力%Sn0.3Ag0.7Cu粉末%微觀形貌%粒度分佈%氧含量
초음속기무화%기체압력%Sn0.3Ag0.7Cu분말%미관형모%립도분포%양함량
supersonic gas atomization%gas pressure%Sn0.3Ag0.7Cu powder%microstructure%particle size distribu-tion%oxygen content
利用超音速气雾化装置制备了Sn0.3Ag0.7Cu无铅焊锡粉末,用扫描电子显微镜和激光粒度分析仪对粉末的微观形貌和粒度分布进行表征,并提出一种反应质量差法计算粉末的氧含量,分析了雾化气体压力对粉末有效雾化率、微观形貌、粒度分布以及氧化程度的影响。结果表明:雾化气体压力对粉末的有效雾化率、微观形貌、粒度分布影响较大。粉末的有效雾化率随雾化气体压力的增加而不断提高;相对高的气压下粉末球形度好,0.6 MPa压力下雾化粉末的球形度好且无团聚;随着雾化气体压力的增大,粉末不断细化,且随着雾化压力的提高,粉末粒度减小幅度逐渐变缓;粉末中的氧含量随雾化气体压力的增大略有增加,高的氧含量使粉末表面粗糙度增大。
利用超音速氣霧化裝置製備瞭Sn0.3Ag0.7Cu無鉛銲錫粉末,用掃描電子顯微鏡和激光粒度分析儀對粉末的微觀形貌和粒度分佈進行錶徵,併提齣一種反應質量差法計算粉末的氧含量,分析瞭霧化氣體壓力對粉末有效霧化率、微觀形貌、粒度分佈以及氧化程度的影響。結果錶明:霧化氣體壓力對粉末的有效霧化率、微觀形貌、粒度分佈影響較大。粉末的有效霧化率隨霧化氣體壓力的增加而不斷提高;相對高的氣壓下粉末毬形度好,0.6 MPa壓力下霧化粉末的毬形度好且無糰聚;隨著霧化氣體壓力的增大,粉末不斷細化,且隨著霧化壓力的提高,粉末粒度減小幅度逐漸變緩;粉末中的氧含量隨霧化氣體壓力的增大略有增加,高的氧含量使粉末錶麵粗糙度增大。
이용초음속기무화장치제비료Sn0.3Ag0.7Cu무연한석분말,용소묘전자현미경화격광립도분석의대분말적미관형모화립도분포진행표정,병제출일충반응질량차법계산분말적양함량,분석료무화기체압력대분말유효무화솔、미관형모、립도분포이급양화정도적영향。결과표명:무화기체압력대분말적유효무화솔、미관형모、립도분포영향교대。분말적유효무화솔수무화기체압력적증가이불단제고;상대고적기압하분말구형도호,0.6 MPa압력하무화분말적구형도호차무단취;수착무화기체압력적증대,분말불단세화,차수착무화압력적제고,분말립도감소폭도축점변완;분말중적양함량수무화기체압력적증대략유증가,고적양함량사분말표면조조도증대。
Sn0.3Ag0.7Cu lead-free solder powders were prepared by supersonic gas atomization equipment. The scan-ning electron microscope and laser particle size analyzer were used to characterize the microstructure and size dis-tribution of the powder, respectively. The method of mass difference after reaction between solder powders was used to calculate the oxygen content of powders. The effects of gas pressure on the effective atomization rate, pow-der microstructure, size distribution and oxygen content were investigated. The results indicate that the gas pres-sure has great influence on the effective atomization rate, powder microstructure and size distribution of the pow-ders. The effective atomization rate increases with the gas pressure increasing. The sphericity of the powders is bet-ter under higher gas pressure, while it is best when the gas pressure is 0.6 MPa. The powder size becomes smaller as the gas pressure increasing, which decreases slowly under higher pressure. The oxygen content of the powders increases slightly with the gas pressure increasing, causing bad powder surface.