计算机工程与应用
計算機工程與應用
계산궤공정여응용
COMPUTER ENGINEERING AND APPLICATIONS
2015年
17期
194-198
,共5页
何易德%秦小林%罗国涛%陈帅
何易德%秦小林%囉國濤%陳帥
하역덕%진소림%라국도%진수
图像重建%R-滤子%广义交叉验证(GCV)%自适应参数%先验项%峰值信噪比值(PSNR)
圖像重建%R-濾子%廣義交扠驗證(GCV)%自適應參數%先驗項%峰值信譟比值(PSNR)
도상중건%R-려자%엄의교차험증(GCV)%자괄응삼수%선험항%봉치신조비치(PSNR)
image reconstruction%R-filters%Generalized Cross Validation(GCV)%adaptive parameter%prior%Peak Signal-to-Noise Ratio(PSNR)
针对图像重建中低分辨率图像信息的利用和先验项(正则化项)的估计问题,提出一种新颖的算法——R-滤子方法,通过计算输入图像的高阶信息来构建先验项,同时采用广义交叉验证(Generalized Cross Validation,GCV)方法自适应求解先验项参数(正则化参数),加强算法的自适应性。实验结果表明:重建图像的峰值信噪比值(Peak Signal-to-Noise Ratio,PSNR)比目前主要先验项方法(BTV、Sparse、Huber)的重建图像的值更高,从重建图像的局部细节和纹理也看出该方法的重建图像具有更丰富的信息,同时,从构造方法上说明R-滤子方法在计算上要优于其他方法。
針對圖像重建中低分辨率圖像信息的利用和先驗項(正則化項)的估計問題,提齣一種新穎的算法——R-濾子方法,通過計算輸入圖像的高階信息來構建先驗項,同時採用廣義交扠驗證(Generalized Cross Validation,GCV)方法自適應求解先驗項參數(正則化參數),加彊算法的自適應性。實驗結果錶明:重建圖像的峰值信譟比值(Peak Signal-to-Noise Ratio,PSNR)比目前主要先驗項方法(BTV、Sparse、Huber)的重建圖像的值更高,從重建圖像的跼部細節和紋理也看齣該方法的重建圖像具有更豐富的信息,同時,從構造方法上說明R-濾子方法在計算上要優于其他方法。
침대도상중건중저분변솔도상신식적이용화선험항(정칙화항)적고계문제,제출일충신영적산법——R-려자방법,통과계산수입도상적고계신식래구건선험항,동시채용엄의교차험증(Generalized Cross Validation,GCV)방법자괄응구해선험항삼수(정칙화삼수),가강산법적자괄응성。실험결과표명:중건도상적봉치신조비치(Peak Signal-to-Noise Ratio,PSNR)비목전주요선험항방법(BTV、Sparse、Huber)적중건도상적치경고,종중건도상적국부세절화문리야간출해방법적중건도상구유경봉부적신식,동시,종구조방법상설명R-려자방법재계산상요우우기타방법。
In image reconstruction, making full use of low-resolution images and estimation prior is an important issue. This paper proposes a novel algorithm, using R-filters method, through calculating the high-level information of image and building prior term. At the same time, it takes advantage of the Generalized Cross-Validation(GCV)to solve adaptive regularization parameter, strengthens adaptivity of the algorithm. Result shows that compared to the current main recon-struction algorithm(BTV, Sparse, Huber), the Peak Signal-to-Noise Ratio(PSNR)of images is higher than others and details are also richer, also from the construction it shows R-filter is superior than others.