计算机工程与应用
計算機工程與應用
계산궤공정여응용
COMPUTER ENGINEERING AND APPLICATIONS
2015年
17期
145-150
,共6页
特征提取%笔迹鉴别%Gabor滤波器%高斯马尔科夫随机场(GMRF)
特徵提取%筆跡鑒彆%Gabor濾波器%高斯馬爾科伕隨機場(GMRF)
특정제취%필적감별%Gabor려파기%고사마이과부수궤장(GMRF)
feature extraction%writer identification%Gabor filter%Gauss Markov Random Field(GMRF)
提取有效的特征一直是笔迹鉴别的关键问题,针对传统Gabor滤波器特征提取方法存在的不足,充分利用Gabor滤波系数间的相关关系,提出一种融合全局特征和局部特征的特征提取方法。该方法先通过字符笔画的方向梯度直方图(HOG)来优化Gabor滤波器的角度参数,再利用高斯马尔科夫随机场(GMRF)模型对Gabor滤波图像中的不同局部结构信息进行描述,最终得到笔迹图像的整体特征。以楷书四大家的真迹样本和收集的英文手稿作为实验数据,采用最小加权欧式距离分类器对笔迹样本进行分类,通过五重交叉验证法分别得到97.6%和88.3%的正确分类率,表明该方法提取的特征具有较强的笔迹表征能力,是一种有效的笔迹特征提取方法。
提取有效的特徵一直是筆跡鑒彆的關鍵問題,針對傳統Gabor濾波器特徵提取方法存在的不足,充分利用Gabor濾波繫數間的相關關繫,提齣一種融閤全跼特徵和跼部特徵的特徵提取方法。該方法先通過字符筆畫的方嚮梯度直方圖(HOG)來優化Gabor濾波器的角度參數,再利用高斯馬爾科伕隨機場(GMRF)模型對Gabor濾波圖像中的不同跼部結構信息進行描述,最終得到筆跡圖像的整體特徵。以楷書四大傢的真跡樣本和收集的英文手稿作為實驗數據,採用最小加權歐式距離分類器對筆跡樣本進行分類,通過五重交扠驗證法分彆得到97.6%和88.3%的正確分類率,錶明該方法提取的特徵具有較彊的筆跡錶徵能力,是一種有效的筆跡特徵提取方法。
제취유효적특정일직시필적감별적관건문제,침대전통Gabor려파기특정제취방법존재적불족,충분이용Gabor려파계수간적상관관계,제출일충융합전국특정화국부특정적특정제취방법。해방법선통과자부필화적방향제도직방도(HOG)래우화Gabor려파기적각도삼수,재이용고사마이과부수궤장(GMRF)모형대Gabor려파도상중적불동국부결구신식진행묘술,최종득도필적도상적정체특정。이해서사대가적진적양본화수집적영문수고작위실험수거,채용최소가권구식거리분류기대필적양본진행분류,통과오중교차험증법분별득도97.6%화88.3%적정학분류솔,표명해방법제취적특정구유교강적필적표정능력,시일충유효적필적특정제취방법。
Extracting effective features to describe handwriting is always a key problem in writer identification. In order to overcome the shortcomings of the traditional Gabor filter method, as well as to fully exploit correlation between Gabor filtering coefficient, this paper proposes a novel method for handwriting feature extraction, which merges the global and local features together. Histogram Of Gradient(HOG)of the character strokes is firstly used to optimize the orientations of Gabor filter, then Gauss Markov Random Field(GMRF)models are developed for every filtered image to describe the different local spatial structures, and finally it obtains the overall style characteristics of the handwriting images. With the four most famous regular script writers’original samples and the collected English scripts as the experimental data, the minimum weighted Euclidean distance classifier is applied to classify handwriting samples, respectively achieving correct classification rates of 97.6% and 88.3% with five-fold cross validation method, which shows that the extracted features have strong ability to characterize the handwriting, and the proposed method is effective in handwriting feature extraction.