印染助剂
印染助劑
인염조제
TEXTILE AUXILIARIES
2015年
7期
9-13,17
,共6页
娄看看%李文%谢婉洁%刘帆%何林蔚%蔡映杰%曾庆福
婁看看%李文%謝婉潔%劉帆%何林蔚%蔡映傑%曾慶福
루간간%리문%사완길%류범%하림위%채영걸%증경복
液氨染色%苎麻纱线%阳离子改性%活性染料%吸附扩散
液氨染色%苧痳紗線%暘離子改性%活性染料%吸附擴散
액안염색%저마사선%양리자개성%활성염료%흡부확산
liquid ammonia dyeing%ramie yarn%cationic modification%reactive dye%adsorption and dif-fusion
采用环氧丙基三甲基氯化铵对苎麻纱线进行阳离子改性.对未改性和阳离子改性的苎麻纱线使用活性橙5在液氨中于-35℃、浴比1:35、染色时间10~600 s、染料用量1%~100%(omf)进行染色.结果表明,未改性和改性的苎麻纱线在液氨染色中,染料的竭染率随染色时间的延长而增加,分别在60 s和180 s时趋于稳定,其对应的竭染率分别为24.3%和31.7%;最大竭染率在600 s,分别为26.5%和34.5%,阳离子改性提高染料竭染率约8%.在此染色条件下,活性橙5在未改性和改性苎麻纱线上的扩散系数分别为4.012×10-14和1.673×10-14 m2/s.液氨染色过程的动力学以准一级动力学模型和准二级动力学模型进行分析,结果表明,阳离子改性和未改性苎麻纱线的染色过程均符合准二级动力学模型.液氨染色过程的等温吸附模型运用Freundlich和Langmuir模型进行分析,结果表明,未改性苎麻纱线的染色吸附过程符合Freundlich等温吸附模型;而阳离子改性苎麻纱线的染色吸附过程符合Langmuir等温吸附模型.
採用環氧丙基三甲基氯化銨對苧痳紗線進行暘離子改性.對未改性和暘離子改性的苧痳紗線使用活性橙5在液氨中于-35℃、浴比1:35、染色時間10~600 s、染料用量1%~100%(omf)進行染色.結果錶明,未改性和改性的苧痳紗線在液氨染色中,染料的竭染率隨染色時間的延長而增加,分彆在60 s和180 s時趨于穩定,其對應的竭染率分彆為24.3%和31.7%;最大竭染率在600 s,分彆為26.5%和34.5%,暘離子改性提高染料竭染率約8%.在此染色條件下,活性橙5在未改性和改性苧痳紗線上的擴散繫數分彆為4.012×10-14和1.673×10-14 m2/s.液氨染色過程的動力學以準一級動力學模型和準二級動力學模型進行分析,結果錶明,暘離子改性和未改性苧痳紗線的染色過程均符閤準二級動力學模型.液氨染色過程的等溫吸附模型運用Freundlich和Langmuir模型進行分析,結果錶明,未改性苧痳紗線的染色吸附過程符閤Freundlich等溫吸附模型;而暘離子改性苧痳紗線的染色吸附過程符閤Langmuir等溫吸附模型.
채용배양병기삼갑기록화안대저마사선진행양리자개성.대미개성화양리자개성적저마사선사용활성등5재액안중우-35℃、욕비1:35、염색시간10~600 s、염료용량1%~100%(omf)진행염색.결과표명,미개성화개성적저마사선재액안염색중,염료적갈염솔수염색시간적연장이증가,분별재60 s화180 s시추우은정,기대응적갈염솔분별위24.3%화31.7%;최대갈염솔재600 s,분별위26.5%화34.5%,양리자개성제고염료갈염솔약8%.재차염색조건하,활성등5재미개성화개성저마사선상적확산계수분별위4.012×10-14화1.673×10-14 m2/s.액안염색과정적동역학이준일급동역학모형화준이급동역학모형진행분석,결과표명,양리자개성화미개성저마사선적염색과정균부합준이급동역학모형.액안염색과정적등온흡부모형운용Freundlich화Langmuir모형진행분석,결과표명,미개성저마사선적염색흡부과정부합Freundlich등온흡부모형;이양리자개성저마사선적염색흡부과정부합Langmuir등온흡부모형.
Cationic ramie yarn was prepared with 2,3- epoxypropytrimethylammonium chloride agent. Sub-sequently, original and cationic modified ramie yarns were dyed with Reactive Orange 5 in liquid ammonia for dyeing time ranging from 10 s to 600 s with 1%~100%(omf) of dyeing concentration at- 35 ℃ and liquor ratio of 1:35. The results showed that the exhaustion percentages of both original and cationic ramie yarns were in-creased with the increase of dyeing time, and the adsorption reached a steady level at 60 s and 180 s, and the exhaustion percentage reached 24.3% and 31.7%, respectively. The highest exhaustion percentage of both ramie fibers were 26.5% and 34.5% at 600 s. The cationic modification increased the dye exhaustion per-centage about 8%. Under the special dyeing conditions, the diffusion coefficients of original ramie fiber and cationic ramie fiber were 4.012×10- 14 and 1.673×10- 14 m2/s , respectively. The dynamics of the liquid ammonia dyeing was analysed by the first- order kinetics model and second- order kinetics model. The dyeing process of the liquid ammonia dyeing of the both yarns fol owed the second- order kinetics model. The Langmuir andFreundlich models were applied to describe the experimental isotherms. The experimental data of untreated ra-mie yarn dyeing fitted the Freundlich model, but cationic ramie yarn fitted the Langmuir model.