计算机工程与应用
計算機工程與應用
계산궤공정여응용
COMPUTER ENGINEERING AND APPLICATIONS
2015年
17期
14-19,52
,共7页
粒子群优化算法%惯性权重%对数递减%对数调整因子
粒子群優化算法%慣性權重%對數遞減%對數調整因子
입자군우화산법%관성권중%대수체감%대수조정인자
particle swarm optimization algorithm%inertia weight%logarithmic decreasing%logarithmic adjustment factor
针对粒子群算法收敛速度慢和易陷入局部最优的问题,提出了基于惯性权重对数递减的粒子群算法,并引入对数调整因子,对数调整因子的不同取值保证了算法搜索成功率。选取八种典型函数分别进行给定迭代次数和给定精度的仿真实验,并与标准PSO算法、惯性权重线性递减PSO算法、惯性权重高斯函数递减PSO算法进行比较。测试结果表明,该策略可以简便高效地提高算法的全局收敛性和收敛速度,并且具有较好的稳定性。求解大多数优化问题时,即使不引入对数调整因子新算法就可以获得较好的效果。
針對粒子群算法收斂速度慢和易陷入跼部最優的問題,提齣瞭基于慣性權重對數遞減的粒子群算法,併引入對數調整因子,對數調整因子的不同取值保證瞭算法搜索成功率。選取八種典型函數分彆進行給定迭代次數和給定精度的倣真實驗,併與標準PSO算法、慣性權重線性遞減PSO算法、慣性權重高斯函數遞減PSO算法進行比較。測試結果錶明,該策略可以簡便高效地提高算法的全跼收斂性和收斂速度,併且具有較好的穩定性。求解大多數優化問題時,即使不引入對數調整因子新算法就可以穫得較好的效果。
침대입자군산법수렴속도만화역함입국부최우적문제,제출료기우관성권중대수체감적입자군산법,병인입대수조정인자,대수조정인자적불동취치보증료산법수색성공솔。선취팔충전형함수분별진행급정질대차수화급정정도적방진실험,병여표준PSO산법、관성권중선성체감PSO산법、관성권중고사함수체감PSO산법진행비교。측시결과표명,해책략가이간편고효지제고산법적전국수렴성화수렴속도,병차구유교호적은정성。구해대다수우화문제시,즉사불인입대수조정인자신산법취가이획득교호적효과。
In the light of the problems of slow convergence rate and falling into the local optimization easily for the Particle Swarm Optimization(PSO)algorithm, the algorithm which based on the inertia weight logarithmic decreasing is pro-posed and the logarithmic adjustment factor is introduced. Changes of logarithmic adjustment factor ensure the success rate. The simulation experiment for eight kinds of typical function in the given number of iterations and precision and the comparison with standard, inertia weight linearly decreasing PSO algorithm and inertia weight decreasing based on Gaussian function are made. The test results show that, the strategy can improve the algorithm’s global convergence and conver-gence speed easily and efficiently and has a better stability. The better performances can be obtained even without intro-ducing the logarithmic adjustment factor while solving the most optimization problems.