智能系统学报
智能繫統學報
지능계통학보
CAAI TRANSACTIONS ON INTELLIGENT SYSTEMS
2015年
4期
636-644
,共9页
锐利边界%模糊分类%图像自动标注%模糊关联规则%决策树
銳利邊界%模糊分類%圖像自動標註%模糊關聯規則%決策樹
예리변계%모호분류%도상자동표주%모호관련규칙%결책수
sharp boundary%fuzzy classification%automatic image annotation%fuzzy association rules%decision tree
传统的基于关联规则算法的图像自动标注存在“锐利边界”问题,使分类存在模糊性、不准确性。且随着多媒体技术的飞速发展,图像信息数据迅速增长,海量的图像数据会形成大量冗余的关联规则,这将导致分类效率大大降低。针对这2个问题,文中提出基于模糊关联规则和决策树的图像自动标注模型。该模型首先获得关联训练图像低层特征和高层语义的模糊关联规则,再利用决策树方法删减冗余的模糊关联规则,基于决策树删减后的模糊关联规则,大大减小了算法的计算复杂度。实验在Corel 5k和IAPR-TC12两个基准数据集上进行,并从精度、召回率、F-measure以及产生的规则数量几个度量措施上进行比较。与其他几种前沿的图像自动标注方法的结果对比表明,该方法在图像的标注精度和标注效率上有很大的提高。
傳統的基于關聯規則算法的圖像自動標註存在“銳利邊界”問題,使分類存在模糊性、不準確性。且隨著多媒體技術的飛速髮展,圖像信息數據迅速增長,海量的圖像數據會形成大量冗餘的關聯規則,這將導緻分類效率大大降低。針對這2箇問題,文中提齣基于模糊關聯規則和決策樹的圖像自動標註模型。該模型首先穫得關聯訓練圖像低層特徵和高層語義的模糊關聯規則,再利用決策樹方法刪減冗餘的模糊關聯規則,基于決策樹刪減後的模糊關聯規則,大大減小瞭算法的計算複雜度。實驗在Corel 5k和IAPR-TC12兩箇基準數據集上進行,併從精度、召迴率、F-measure以及產生的規則數量幾箇度量措施上進行比較。與其他幾種前沿的圖像自動標註方法的結果對比錶明,該方法在圖像的標註精度和標註效率上有很大的提高。
전통적기우관련규칙산법적도상자동표주존재“예리변계”문제,사분류존재모호성、불준학성。차수착다매체기술적비속발전,도상신식수거신속증장,해량적도상수거회형성대량용여적관련규칙,저장도치분류효솔대대강저。침대저2개문제,문중제출기우모호관련규칙화결책수적도상자동표주모형。해모형수선획득관련훈련도상저층특정화고층어의적모호관련규칙,재이용결책수방법산감용여적모호관련규칙,기우결책수산감후적모호관련규칙,대대감소료산법적계산복잡도。실험재Corel 5k화IAPR-TC12량개기준수거집상진행,병종정도、소회솔、F-measure이급산생적규칙수량궤개도량조시상진행비교。여기타궤충전연적도상자동표주방법적결과대비표명,해방법재도상적표주정도화표주효솔상유흔대적제고。
The traditional automatic image annotation based on association rules exists the problem of sharp boundary, which makes classification more fuzzy and inaccurate.Moreover, with the rapid development of multimedia technology, the size of image data increases quickly.Massive image data will produce a lot of redundant association rules, which greatly decreases the efficiency of image classification.In order to solve these two problems, this paper proposes an auto-matic image annotation approach based on fuzzy association rules and decision trees.The approach firstly obtains fuzzy association rules which represent the fuzzy correlations between low-level visual features and high-level semantic concepts of training images .Then, decision tree is adopted to reduce the redundant fuzzy association rules.As a result, computa-tional complexity of the algorithm is decreased to a large degree.Experiments were done on Corel5k and IAPR-TC12 datasets.The evaluation measures are compared from the aspects of precision, recall, F-measure and the number of rules .The experimental results show that the proposed method acquires higher accuracy and efficiency in comparison with several state-of-the-art automatic image annotation approaches.