统计与信息论坛
統計與信息論罈
통계여신식론단
STATISTICS & INFORMATION TRIBUNE
2015年
8期
20-24
,共5页
贝叶斯变量选择%贝叶斯模型平均%贝叶斯自适应抽样%放回抽样
貝葉斯變量選擇%貝葉斯模型平均%貝葉斯自適應抽樣%放迴抽樣
패협사변량선택%패협사모형평균%패협사자괄응추양%방회추양
Bayesian variable selection%Bayesian model averaging%Bayesian adaptive sampling%sampling with replacement
对多元线性回归问题中的变量选择进行研究,改进现有的贝叶斯自适应抽样(BAS )方法,在实现整体不放回抽样的前提下,局部引进放回抽样的方法,通过数据仿真发现,同样进行贝叶斯模型平均(BMA),改进后的方法预测效果比改进前的BAS预测效果更好。
對多元線性迴歸問題中的變量選擇進行研究,改進現有的貝葉斯自適應抽樣(BAS )方法,在實現整體不放迴抽樣的前提下,跼部引進放迴抽樣的方法,通過數據倣真髮現,同樣進行貝葉斯模型平均(BMA),改進後的方法預測效果比改進前的BAS預測效果更好。
대다원선성회귀문제중적변량선택진행연구,개진현유적패협사자괄응추양(BAS )방법,재실현정체불방회추양적전제하,국부인진방회추양적방법,통과수거방진발현,동양진행패협사모형평균(BMA),개진후적방법예측효과비개진전적BAS예측효과경호。
T his paper mainly studies on the variable selection for multiple linear regression model and is to improve the existing Bayesian adaptive sampling method(BAS) .Not sampling without replacement all the time but partially adopting sampling with replacement ,and we can find ,through data simulation ,that the predictive effect of improved method is better than former one if Bayesian model averaging (BM A ) is equally adopted .