统计与信息论坛
統計與信息論罈
통계여신식론단
STATISTICS & INFORMATION TRIBUNE
2015年
8期
16-19
,共4页
组确保独立筛选法%确保独立筛选法%变量选择%边际组回归
組確保獨立篩選法%確保獨立篩選法%變量選擇%邊際組迴歸
조학보독립사선법%학보독립사선법%변량선택%변제조회귀
GSIS%SIS%variable selection%marginal group regression
变量选择在超高维统计模型中非常重要。Fan 和 Lv 基于简单相关系数提出确保独立筛选法(SIS),但当自变量被分成组时,SIS就会失效。因为SIS只能对单个变量进行选择,不能对组变量进行选择。为此,基于边际组回归提出组确保独立筛选法(GSIS),该方法不仅对组变量有效,对单个变量也有效,或者两者的混合也同样有效。Monte Carlo模拟结果显示,GSIS的表现优于SIS。
變量選擇在超高維統計模型中非常重要。Fan 和 Lv 基于簡單相關繫數提齣確保獨立篩選法(SIS),但噹自變量被分成組時,SIS就會失效。因為SIS隻能對單箇變量進行選擇,不能對組變量進行選擇。為此,基于邊際組迴歸提齣組確保獨立篩選法(GSIS),該方法不僅對組變量有效,對單箇變量也有效,或者兩者的混閤也同樣有效。Monte Carlo模擬結果顯示,GSIS的錶現優于SIS。
변량선택재초고유통계모형중비상중요。Fan 화 Lv 기우간단상관계수제출학보독립사선법(SIS),단당자변량피분성조시,SIS취회실효。인위SIS지능대단개변량진행선택,불능대조변량진행선택。위차,기우변제조회귀제출조학보독립사선법(GSIS),해방법불부대조변량유효,대단개변량야유효,혹자량자적혼합야동양유효。Monte Carlo모의결과현시,GSIS적표현우우SIS。
Variable selection plays an important role in high dimensional models .Fan and Lv showed sure independent screening (SIS ) based on simple correlation . But w hen independent variable can be naturally grouped ,SIS does not work .Because SIS is designed for individual variable selection ,but not group selection .In this paper ,we propose group sure independent screening (GSIS ) based on marginal group regression .The method is designed for either variable selection or group selection ,also for both . Monte Carlo simulations indicate that GSIS has superior performance in group and individual variable selection relative to SIS .