光电工程
光電工程
광전공정
OPTO-ELECTRONIC ENGINEERING
2015年
8期
41-46
,共6页
汤倩%张仁斌%凌晋江%叶秋
湯倩%張仁斌%凌晉江%葉鞦
탕천%장인빈%릉진강%협추
热辐射%红外偏振%偏振度%双向反射分布函数
熱輻射%紅外偏振%偏振度%雙嚮反射分佈函數
열복사%홍외편진%편진도%쌍향반사분포함수
thermal emission%infrared polarization%degree of polarization%bidirectional reflectance distribution function
针对传统热辐射偏振模型忽略物体表面微观分布的问题,进行红外热辐射偏振特性建模仿真研究,基于微面元偏振双向反射分布函数(pBRDF),结合微观结构分布情况建立红外热辐射偏振度模型。利用红外热辐射发射率的平行和垂直分量的和分之差来表示偏振度,根据基尔霍夫定律和微面元双向反射分布函数(BRDF)得到发射率与半球空间反射率之间的关系,最后将微面元BRDF偏振化计算定向半球空间反射率,继而得到定向发射率矩阵并计算偏振度。仿真结果表明,模型仿真得到的红外热辐射偏振度与发射角的关系曲线与实际测量结果基本保持一致,并且与传统红外热辐射偏振模型仿真结果相比较更符合实测值,在表面粗糙度较大的情况下,能够更准确地反映物体的红外热辐射偏振特性。
針對傳統熱輻射偏振模型忽略物體錶麵微觀分佈的問題,進行紅外熱輻射偏振特性建模倣真研究,基于微麵元偏振雙嚮反射分佈函數(pBRDF),結閤微觀結構分佈情況建立紅外熱輻射偏振度模型。利用紅外熱輻射髮射率的平行和垂直分量的和分之差來錶示偏振度,根據基爾霍伕定律和微麵元雙嚮反射分佈函數(BRDF)得到髮射率與半毬空間反射率之間的關繫,最後將微麵元BRDF偏振化計算定嚮半毬空間反射率,繼而得到定嚮髮射率矩陣併計算偏振度。倣真結果錶明,模型倣真得到的紅外熱輻射偏振度與髮射角的關繫麯線與實際測量結果基本保持一緻,併且與傳統紅外熱輻射偏振模型倣真結果相比較更符閤實測值,在錶麵粗糙度較大的情況下,能夠更準確地反映物體的紅外熱輻射偏振特性。
침대전통열복사편진모형홀략물체표면미관분포적문제,진행홍외열복사편진특성건모방진연구,기우미면원편진쌍향반사분포함수(pBRDF),결합미관결구분포정황건립홍외열복사편진도모형。이용홍외열복사발사솔적평행화수직분량적화분지차래표시편진도,근거기이곽부정률화미면원쌍향반사분포함수(BRDF)득도발사솔여반구공간반사솔지간적관계,최후장미면원BRDF편진화계산정향반구공간반사솔,계이득도정향발사솔구진병계산편진도。방진결과표명,모형방진득도적홍외열복사편진도여발사각적관계곡선여실제측량결과기본보지일치,병차여전통홍외열복사편진모형방진결과상비교경부합실측치,재표면조조도교대적정황하,능구경준학지반영물체적홍외열복사편진특성。
Traditional thermal emission polarization model ignores the microscopic distribution, and taking this into consideration to expand modeling and simulation research of infrared thermal emission polarization characteristics. Model of the degree of polarization of the infrared thermal emission is built based on the microfacet polarized Bidirectional Reflectance Distribution Function (pBRDF) and the microstructure distribution. Utilizing the difference between the parallel and perpendicular components of the emissivity of the infrared thermal emission divided by the sum of them represent the degree of polarization. And the relationship between emissivity and hemispherical reflectance is obtained according to the Kirchhoff's law and the microfacet BRDF. Polarizing the microfacet BRDF to calculate the directional hemispherical reflectance and then directional emissivity matrix, and last to get the degree of polarization. The simulation results show that the curves of the relationship between the polarization and the emission angle of the infrared thermal emission are consistent with the actual measurement results, and compared with the simulation results of traditional thermal emission polarization model, is closer to the measured value, especially in the case of the surface roughness is larger, can more accurately reflect the infrared thermal emission polarization characteristics.