南方电网技术
南方電網技術
남방전망기술
SOUTHERN POWER SYSTEM TECHNOLOGY
2015年
6期
80-86
,共7页
张华赢%朱正国%姚森敬%高田%曹军威%韩蓄%王淼
張華贏%硃正國%姚森敬%高田%曹軍威%韓蓄%王淼
장화영%주정국%요삼경%고전%조군위%한축%왕묘
大数据%MapReduce%分布式数据挖掘%朴素贝叶斯(NaiveBayes)分类
大數據%MapReduce%分佈式數據挖掘%樸素貝葉斯(NaiveBayes)分類
대수거%MapReduce%분포식수거알굴%박소패협사(NaiveBayes)분류
big data%MapReduce%distributed data mining%Naive Bayes classification
运用基于大数据处理架构的Naive Bayes分类方法提出了暂态电能质量评估方法, 将数据来源扩展至电网运行监测数据、 电力用户数据和公共信息数据等方面, 并将评估结果按严重程度分为暂态正常状态、 短时电压暂降状态、短时深度电压暂降状态、 短时电压失压状态. 基于MapReduce架构, 设计分布式Naive Bayes算法实现状态分类. 在分类器训练阶段, 对海量历史数据进行分布式学习, 周期性地生成评估规则库并部署到所有评估节点. 在状态评估阶段, 各评估节点基于流处理框架快速生成实时评估样本, 并根据当前规则库实时地得出评估结果. 试验结果表明, 所提出的基于大数据分析的暂态电能质量评估方法是可行, 在准确率和处理速度上都取得了较好的效果.
運用基于大數據處理架構的Naive Bayes分類方法提齣瞭暫態電能質量評估方法, 將數據來源擴展至電網運行鑑測數據、 電力用戶數據和公共信息數據等方麵, 併將評估結果按嚴重程度分為暫態正常狀態、 短時電壓暫降狀態、短時深度電壓暫降狀態、 短時電壓失壓狀態. 基于MapReduce架構, 設計分佈式Naive Bayes算法實現狀態分類. 在分類器訓練階段, 對海量歷史數據進行分佈式學習, 週期性地生成評估規則庫併部署到所有評估節點. 在狀態評估階段, 各評估節點基于流處理框架快速生成實時評估樣本, 併根據噹前規則庫實時地得齣評估結果. 試驗結果錶明, 所提齣的基于大數據分析的暫態電能質量評估方法是可行, 在準確率和處理速度上都取得瞭較好的效果.
운용기우대수거처리가구적Naive Bayes분류방법제출료잠태전능질량평고방법, 장수거래원확전지전망운행감측수거、 전력용호수거화공공신식수거등방면, 병장평고결과안엄중정도분위잠태정상상태、 단시전압잠강상태、단시심도전압잠강상태、 단시전압실압상태. 기우MapReduce가구, 설계분포식Naive Bayes산법실현상태분류. 재분류기훈련계단, 대해량역사수거진행분포식학습, 주기성지생성평고규칙고병부서도소유평고절점. 재상태평고계단, 각평고절점기우류처리광가쾌속생성실시평고양본, 병근거당전규칙고실시지득출평고결과. 시험결과표명, 소제출적기우대수거분석적잠태전능질량평고방법시가행, 재준학솔화처리속도상도취득료교호적효과.
A transient power quality assessment method is proposed based on Naive Bayes classification in the architecture of big data processing. The data sources are extended to power grid monitoring data, power customer data and public data, and the assessment se-verities are classified into normal state, abnormal state, critical state, and failed state according to the results of Naive Bayes classifi-cation. A Naive Bayes classification method based on MapReduce to realize power quality assessment is designsed. In the classifier training phase, massive historical data are used as the distributed learning object, and assessment rules are generated periodically. In the state assessment phase, each assessment node updates the assessment rules generated by the training phase, generates real-time e-valuation of the samples from the stream processing framework, and evaluates the power quality state according to the current rule. Ex-periment results show that the transient power quality evaluation method based on big data analysis presented in this paper is feasible, and achieve good results both in classification accuracy and processing speed.