福州大学学报(自然科学版)
福州大學學報(自然科學版)
복주대학학보(자연과학판)
JOURNAL OF FUZHOU UNIVERSITY(NATURAL SCIENCE EDITION)
2015年
4期
512-516
,共5页
建筑能耗%主成分分析%RBF神经网络%正交试验%组合预测
建築能耗%主成分分析%RBF神經網絡%正交試驗%組閤預測
건축능모%주성분분석%RBF신경망락%정교시험%조합예측
energy consumption of building%principal component analysis%RBF neural network%orthogonal experiment%combination predicting
由于建筑能耗因子间存在非线性和高度冗余特性,传统预测方法很难消除数据之间冗余和捕捉非线性特征,导致预测精度较低。为了提高建筑能耗预测精度,提出一种将主成分分析( principal component analysis, PCA)和径向基函数(radial basic function, RBF)神经网络相结合的建筑能耗预测方法(PCA-RBF)。利用PCA消除建筑能耗高维变量数据的相关性,并按累积贡献率提取主成分,将主成分作为RBF神经网络的输入进行训练学习。通过PCA避免了模型过多的输入导致的训练耗时长及预测精度较低的不足。通过将PCA-RBF模型方法应用于某办公建筑能耗的预测中,并与RBF神经网络及BP神经网络模型相比,实验结果表明PCA-RBF模型方法能有效提高建筑能耗预测精度。
由于建築能耗因子間存在非線性和高度冗餘特性,傳統預測方法很難消除數據之間冗餘和捕捉非線性特徵,導緻預測精度較低。為瞭提高建築能耗預測精度,提齣一種將主成分分析( principal component analysis, PCA)和徑嚮基函數(radial basic function, RBF)神經網絡相結閤的建築能耗預測方法(PCA-RBF)。利用PCA消除建築能耗高維變量數據的相關性,併按纍積貢獻率提取主成分,將主成分作為RBF神經網絡的輸入進行訓練學習。通過PCA避免瞭模型過多的輸入導緻的訓練耗時長及預測精度較低的不足。通過將PCA-RBF模型方法應用于某辦公建築能耗的預測中,併與RBF神經網絡及BP神經網絡模型相比,實驗結果錶明PCA-RBF模型方法能有效提高建築能耗預測精度。
유우건축능모인자간존재비선성화고도용여특성,전통예측방법흔난소제수거지간용여화포착비선성특정,도치예측정도교저。위료제고건축능모예측정도,제출일충장주성분분석( principal component analysis, PCA)화경향기함수(radial basic function, RBF)신경망락상결합적건축능모예측방법(PCA-RBF)。이용PCA소제건축능모고유변량수거적상관성,병안루적공헌솔제취주성분,장주성분작위RBF신경망락적수입진행훈련학습。통과PCA피면료모형과다적수입도치적훈련모시장급예측정도교저적불족。통과장PCA-RBF모형방법응용우모판공건축능모적예측중,병여RBF신경망락급BP신경망락모형상비,실험결과표명PCA-RBF모형방법능유효제고건축능모예측정도。
There are highly redundant features in affecting factors of building energy consumption, and the traditional method has low predictive accuracy.In order to improve the accuracy of building energy consumption forecasting, a model method for energy consumption based on principal component analy-sis ( PCA) and radial basic function ( RBF) neural network is proposed, which combines the abilities of PCA to de-correlate the variables and reduce the dimensionality of the data with that of neural network to approximate any complex nonlinear function.The PCA-RBF model is applied to the ener-gy consumption prediction for an office building, and the simulated results show that the PCA-RBF has better accuracy compared with RBF neural network model and BP neural network model, which is considered that the PCA-RBF is effective for building energy consumption prediction.