科技通报
科技通報
과기통보
BULLETIN OF SCIENCE AND TECHNOLOGY
2015年
8期
81-83
,共3页
云计算%云存储%分布式%访问
雲計算%雲存儲%分佈式%訪問
운계산%운존저%분포식%방문
cloud computing%cloud storage%distributed%access
在云计算环境中,根据数据的海量性和分布性特点,需要对云存储数据库进行访问控制.传统的访问控制算法采用散点信任评估的访问控制算法,融合云存储安全评估图进行均匀分布,当云存储节点分裂时导致数据访问性能不好.提出一种基于分布式B树编译的高效并发访问控制算法,根据访问服务器的数量,计算B树的高度和精度边界,查找缓冲的内部节点构成的B树,具有相同属性个数的边缘概念处于同一层,由此进行并发控制数据分类,对于包含有多个属性的类别,将其中的多个属性合并成一个属性,实现对云存储系统的高效并发访问控制.仿真实验表明,采用该算法,具有较小的CPU负载,明显提高了分布式B树的访问效率,并发访问控制精度较高,减轻服务器开销,提高数据访问能力,优化存储性能.
在雲計算環境中,根據數據的海量性和分佈性特點,需要對雲存儲數據庫進行訪問控製.傳統的訪問控製算法採用散點信任評估的訪問控製算法,融閤雲存儲安全評估圖進行均勻分佈,噹雲存儲節點分裂時導緻數據訪問性能不好.提齣一種基于分佈式B樹編譯的高效併髮訪問控製算法,根據訪問服務器的數量,計算B樹的高度和精度邊界,查找緩遲的內部節點構成的B樹,具有相同屬性箇數的邊緣概唸處于同一層,由此進行併髮控製數據分類,對于包含有多箇屬性的類彆,將其中的多箇屬性閤併成一箇屬性,實現對雲存儲繫統的高效併髮訪問控製.倣真實驗錶明,採用該算法,具有較小的CPU負載,明顯提高瞭分佈式B樹的訪問效率,併髮訪問控製精度較高,減輕服務器開銷,提高數據訪問能力,優化存儲性能.
재운계산배경중,근거수거적해량성화분포성특점,수요대운존저수거고진행방문공제.전통적방문공제산법채용산점신임평고적방문공제산법,융합운존저안전평고도진행균균분포,당운존저절점분렬시도치수거방문성능불호.제출일충기우분포식B수편역적고효병발방문공제산법,근거방문복무기적수량,계산B수적고도화정도변계,사조완충적내부절점구성적B수,구유상동속성개수적변연개념처우동일층,유차진행병발공제수거분류,대우포함유다개속성적유별,장기중적다개속성합병성일개속성,실현대운존저계통적고효병발방문공제.방진실험표명,채용해산법,구유교소적CPU부재,명현제고료분포식B수적방문효솔,병발방문공제정도교고,감경복무기개소,제고수거방문능력,우화존저성능.
In a cloud computing environment, based on the mass and the distribution characteristics of data, the need to con-trol access to the cloud storage database. The traditional access control algorithm uses scatter trust evaluation access con-trol algorithm, fusion cloud storage security evaluation chart of uniform distribution, when the cloud storage node splitting leads to data access performance is not good. We present an efficient concurrent distributed B tree compiler based access control algorithm, according to the number of access server, the height and the accuracy of the boundary calculation B tree internal node search, constitute a B buffer tree, with the same number of attributes of the edge concept in the same layer, the concurrent control data classification, for it contains many attribute categories, multiple attributes which are combined into a property, access control to achieve efficient concurrency of cloud storage system. Simulation results show that using this algorithm, the load has a smaller CPU, significantly improve the access efficiency of distributed B tree, concurrent ac-cess to higher control precision, reduce server overhead, improve data access capability, optimization of storage perfor-mance.