解放军理工大学学报(自然科学版)
解放軍理工大學學報(自然科學版)
해방군리공대학학보(자연과학판)
JOURNAL OF PLA UNIVERSITY OF SCIENCE AND TECHNOLOGY(NATURAL SCIENCE EDITION)
2015年
4期
394-400
,共7页
柴凯%张梅军%黄杰%王振业
柴凱%張梅軍%黃傑%王振業
시개%장매군%황걸%왕진업
时频特征%液压系统%主成分分析%核极限学习机%故障诊断
時頻特徵%液壓繫統%主成分分析%覈極限學習機%故障診斷
시빈특정%액압계통%주성분분석%핵겁한학습궤%고장진단
time-frequency characteristics%hydraulic system%PCA%KELM%fault diagnosis
为了解决液压系统泄漏、堵塞和气穴等多类型故障下特征提取和模式识别困难的问题,提出基于时频特征和PCA-KELM的液压故障智能诊断新方法。首先利用统计分析和总体平均经验模态分解方法,构造高维混合域初始特征向量,从不同特征指标、不同分析角度对不同种类液压故障进行表征和刻画;然后通过主成分分析对多维初始特征向量进行降维和特征二次提取,将高维相关变量转化为低维独立的主特征向量;最后利用PCA主元构造的主特征向量输入核极限学习机网络中,实现故障类型的识别。实验结果表明,混合域初始特征向量能全面准确地描述故障特征,PCA提取的主特征向量摒弃了冗余信息且简化了分类器结构,KELM网络诊断速度快、分类准确率高。
為瞭解決液壓繫統洩漏、堵塞和氣穴等多類型故障下特徵提取和模式識彆睏難的問題,提齣基于時頻特徵和PCA-KELM的液壓故障智能診斷新方法。首先利用統計分析和總體平均經驗模態分解方法,構造高維混閤域初始特徵嚮量,從不同特徵指標、不同分析角度對不同種類液壓故障進行錶徵和刻畫;然後通過主成分分析對多維初始特徵嚮量進行降維和特徵二次提取,將高維相關變量轉化為低維獨立的主特徵嚮量;最後利用PCA主元構造的主特徵嚮量輸入覈極限學習機網絡中,實現故障類型的識彆。實驗結果錶明,混閤域初始特徵嚮量能全麵準確地描述故障特徵,PCA提取的主特徵嚮量摒棄瞭冗餘信息且簡化瞭分類器結構,KELM網絡診斷速度快、分類準確率高。
위료해결액압계통설루、도새화기혈등다류형고장하특정제취화모식식별곤난적문제,제출기우시빈특정화PCA-KELM적액압고장지능진단신방법。수선이용통계분석화총체평균경험모태분해방법,구조고유혼합역초시특정향량,종불동특정지표、불동분석각도대불동충류액압고장진행표정화각화;연후통과주성분분석대다유초시특정향량진행강유화특정이차제취,장고유상관변량전화위저유독립적주특정향량;최후이용PCA주원구조적주특정향량수입핵겁한학습궤망락중,실현고장류형적식별。실험결과표명,혼합역초시특정향량능전면준학지묘술고장특정,PCA제취적주특정향량병기료용여신식차간화료분류기결구,KELM망락진단속도쾌、분류준학솔고。
To tackle the different faults in hydraulic system,e.g.leakage,blockage,cavitation and so on, which it makes difficult to make feature extraction and mode recognition,a new fault diagnosis approach based on time-frequency characteristics and PCA-KELM was proposed.Firstly,high-dimensional mixed domain feature vectors were obtained by statistical analysis and ensemble empirical mode decomposition (EEMD)so as to describe different faults from various feature indexes and domains.Then,principle com-ponent analysis (PCA)was used to reduce the dimensionality of feature vectors,which turns high-dimen-sional variables into low-dimensional variables.Finally,these final features were input into kernel extreme learning machine (KELM)to identify faults.The results show that the fault characteristics are described comprehensively and accurately by mixed domain feature vectors.PCA can eliminate superfluous data and simplify classifier structure.KELM can increase diagnosis speed and meet the recognition rate requirement.