振动工程学报
振動工程學報
진동공정학보
JOURNAL OF VIBRATION ENGINEERING
2015年
4期
625-632
,共8页
朱会杰%王新晴%芮挺%李艳峰%张红涛%赵洋
硃會傑%王新晴%芮挺%李豔峰%張紅濤%趙洋
주회걸%왕신청%예정%리염봉%장홍도%조양
信号处理%移不变稀疏编码%盲源分离%正交匹配追踪%字典学习
信號處理%移不變稀疏編碼%盲源分離%正交匹配追蹤%字典學習
신호처리%이불변희소편마%맹원분리%정교필배추종%자전학습
signal processing%shift invariant sparse coding%blind source separation%orthogonal matching pursuit%dictionary learning
针对特征反复出现的机械信号,提出了一种使用移不变稀疏编码的单通道盲源分离方法。移不变稀疏编码将原始信号看成多个基与系数的卷积,能够根据信号的统计分布,利用信号自身特征自适应地学习到匹配的基和稀疏的系数。在恒定工况下,不同的信号源具有不同的特征,同一信号源的特征结构相似,将学习到的不同特性的基分别重构即可得到相应的源信号。将该方案应用于仿真的齿轮故障和轴承故障振动信号盲源分离问题中,以及用来提取实测的液压泵压力脉动。结果显示,这种方法较其他方法有所改进,所需人工经验少、抗噪能力强、信号恢复精度高、鲁棒性好,适用于单通道机械信号盲源分离,为单通道信号盲源分离提供了一种新思路。
針對特徵反複齣現的機械信號,提齣瞭一種使用移不變稀疏編碼的單通道盲源分離方法。移不變稀疏編碼將原始信號看成多箇基與繫數的捲積,能夠根據信號的統計分佈,利用信號自身特徵自適應地學習到匹配的基和稀疏的繫數。在恆定工況下,不同的信號源具有不同的特徵,同一信號源的特徵結構相似,將學習到的不同特性的基分彆重構即可得到相應的源信號。將該方案應用于倣真的齒輪故障和軸承故障振動信號盲源分離問題中,以及用來提取實測的液壓泵壓力脈動。結果顯示,這種方法較其他方法有所改進,所需人工經驗少、抗譟能力彊、信號恢複精度高、魯棒性好,適用于單通道機械信號盲源分離,為單通道信號盲源分離提供瞭一種新思路。
침대특정반복출현적궤계신호,제출료일충사용이불변희소편마적단통도맹원분리방법。이불변희소편마장원시신호간성다개기여계수적권적,능구근거신호적통계분포,이용신호자신특정자괄응지학습도필배적기화희소적계수。재항정공황하,불동적신호원구유불동적특정,동일신호원적특정결구상사,장학습도적불동특성적기분별중구즉가득도상응적원신호。장해방안응용우방진적치륜고장화축승고장진동신호맹원분리문제중,이급용래제취실측적액압빙압력맥동。결과현시,저충방법교기타방법유소개진,소수인공경험소、항조능력강、신호회복정도고、로봉성호,괄용우단통도궤계신호맹원분리,위단통도신호맹원분리제공료일충신사로。
For the single channel mechanical signal with repeated features ,the method for blind source separation based on shift invariant sparse coding was proposed in this paper .In the literatures of shift invariant sparse coding ,a signal is described as the convolutions of multi bases and their coefficients .According to statistical distribution of a signal ,shift invariant sparse coding could adaptively learn its bases and the sparse coefficients from the structures of the signal itself .Under stable condition ,dif‐ferent signal sources have different features ,and the features from the same source are similar ,thus the learned bases with dif‐ferent features could be used to reconstruct corresponding signal sources .This scheme was applied in the blind source separa‐tion of simulated vibration signals of faulty gear and bearing ,as well as the extraction of pressure pulsation of hydraulic pump . The result showed that this algorithm has improved a lot compared to other algorithms ,and this algorithm needs less expert‐ise ,has strong anti‐interference ability ,in addition ,it is robust and could recover original signals more accurately .Therefore , this technique is appropriate to blind source separation for single channel mechanical signal ,and provides a new way for single channel blind source separation .