气象
氣象
기상
METEOROLOGICAL MONTHLY
2015年
8期
964-969
,共6页
华连生%温华洋%朱华亮%张正铨
華連生%溫華洋%硃華亮%張正銓
화련생%온화양%주화량%장정전
霜生%Bayes判别分析%自动化观测
霜生%Bayes判彆分析%自動化觀測
상생%Bayes판별분석%자동화관측
frost occurrence%Bayes discriminant analysis%automatic observation
提利用安徽砀山气象站的2001—2013年冬半年(10月至次年4月)的观测资料,探讨霜生与气温、地温、水汽压和风速等气象要素的相关性,并基于 Bayes 判别方法,采用逐步判别分析,建立多套霜生自动判别模型。结果表明:(1)霜是否出现与日最低及夜间不同观测时次的气温、地表温度显著相关,当夜间气温或地表温度越低,低于霜点的可能性越大,结霜的可能性也越大。(2)通过回算性检验和独立样本的预报性检验,基于 Bayes 判别法的霜生模型,对霜未发生的平均判别准确率达到86.5%,对霜发生的平均判别准确率达到92.7%,其中用日最低地温、当日07时水汽压和当日07时风速所建立的三要素模型最优,对霜发生的判别准确率可达到90%以上。因此,可以将 Bayes 霜生判别模型与图像识别技术相结合应用于霜的自动化观测。
提利用安徽碭山氣象站的2001—2013年鼕半年(10月至次年4月)的觀測資料,探討霜生與氣溫、地溫、水汽壓和風速等氣象要素的相關性,併基于 Bayes 判彆方法,採用逐步判彆分析,建立多套霜生自動判彆模型。結果錶明:(1)霜是否齣現與日最低及夜間不同觀測時次的氣溫、地錶溫度顯著相關,噹夜間氣溫或地錶溫度越低,低于霜點的可能性越大,結霜的可能性也越大。(2)通過迴算性檢驗和獨立樣本的預報性檢驗,基于 Bayes 判彆法的霜生模型,對霜未髮生的平均判彆準確率達到86.5%,對霜髮生的平均判彆準確率達到92.7%,其中用日最低地溫、噹日07時水汽壓和噹日07時風速所建立的三要素模型最優,對霜髮生的判彆準確率可達到90%以上。因此,可以將 Bayes 霜生判彆模型與圖像識彆技術相結閤應用于霜的自動化觀測。
제이용안휘탕산기상참적2001—2013년동반년(10월지차년4월)적관측자료,탐토상생여기온、지온、수기압화풍속등기상요소적상관성,병기우 Bayes 판별방법,채용축보판별분석,건립다투상생자동판별모형。결과표명:(1)상시부출현여일최저급야간불동관측시차적기온、지표온도현저상관,당야간기온혹지표온도월저,저우상점적가능성월대,결상적가능성야월대。(2)통과회산성검험화독립양본적예보성검험,기우 Bayes 판별법적상생모형,대상미발생적평균판별준학솔체도86.5%,대상발생적평균판별준학솔체도92.7%,기중용일최저지온、당일07시수기압화당일07시풍속소건립적삼요소모형최우,대상발생적판별준학솔가체도90%이상。인차,가이장 Bayes 상생판별모형여도상식별기술상결합응용우상적자동화관측。
The correlations between frost and temperature,surface temperature,vapor pressure,wind speed and other meteorological factors are discussed in this paper by using the observation data from Anhui Dangshan Weather Station in the winter half-year (from October to April of the next year)from 2001 to 2013.Using stepwise discriminant analysis method,multiple sets of frost automatic discriminant models for the occurrence of frost are built based on Bayes discriminant method.The results show that:(1)The occurrence of frost is significantly correlated with daily minimum temperature,night temperature of differ-ent observation time and surface temperature.The lower the night temperature or the surface temperature is,the larger the possibility of the temperature is lower than the frost point and the greater the possibility of the frost occurrence.(2)Through the back calculation test and prediction test of independent samples, the average accuracy rate of un-occurred frost discriminated by the frost model is 86.5% based on Bayes discriminant method and the average accuracy rate of the seen frost is 92.7%.The three factor models based on the daily minimum temperature,the daily vapor pressure at 07:00 BT and the daily wind speed at 07:00 BT are optimal.The accuracy rate of discriminating the frost occurrence by the three factor models is more than 90%.Therefore,we can combine the Bayes frost discriminant model with image recognition technology,and apply the new technology to frost automatic observation.