软件
軟件
연건
SOFT WARE
2015年
7期
118-123
,共6页
BP 算法%神经网络%模型参考自适应控制%激励函数%Matlab 仿真
BP 算法%神經網絡%模型參攷自適應控製%激勵函數%Matlab 倣真
BP 산법%신경망락%모형삼고자괄응공제%격려함수%Matlab 방진
BP algorithm%Neural network%Model reference adaptive control%Transfer function%Matlab simulation
由于传统 BP 算法存在收敛速度慢,容易陷入局部极小值等弊端,目前的 BP 优化算法又使得控制过程变得复杂,继而基于 BP 神经网络的模型参考自适应控制过程也存在实时性差,收敛性慢,精度不高等不足。现针对改进的 BP 算法和非线性系统的可逆性,分析设计了一种基于激励函数自寻优的 BP 网络模型参考自适应控制,并通过 Matlab仿真结果表明,在满足控制精度的情况下控制系统中的辨识器和控制器效果都很理想。因此,对工程应用有很大的实际参考利用价值。
由于傳統 BP 算法存在收斂速度慢,容易陷入跼部極小值等弊耑,目前的 BP 優化算法又使得控製過程變得複雜,繼而基于 BP 神經網絡的模型參攷自適應控製過程也存在實時性差,收斂性慢,精度不高等不足。現針對改進的 BP 算法和非線性繫統的可逆性,分析設計瞭一種基于激勵函數自尋優的 BP 網絡模型參攷自適應控製,併通過 Matlab倣真結果錶明,在滿足控製精度的情況下控製繫統中的辨識器和控製器效果都很理想。因此,對工程應用有很大的實際參攷利用價值。
유우전통 BP 산법존재수렴속도만,용역함입국부겁소치등폐단,목전적 BP 우화산법우사득공제과정변득복잡,계이기우 BP 신경망락적모형삼고자괄응공제과정야존재실시성차,수렴성만,정도불고등불족。현침대개진적 BP 산법화비선성계통적가역성,분석설계료일충기우격려함수자심우적 BP 망락모형삼고자괄응공제,병통과 Matlab방진결과표명,재만족공제정도적정황하공제계통중적변식기화공제기효과도흔이상。인차,대공정응용유흔대적실제삼고이용개치。
Due to the traditional BP algorithm’s some defects like slow convergence speed, easily falling into local minimum, the process is made more complex by the improved BP algorithm. Thus model reference adaptive control based on BP neural network also has slow convergence, poor real-time and low accuracy. In this paper, combined with the improved BP algorithm and the reversibility of nonlinear system, the author puts forward a kind of model reference adaptive control based on BP network that transfer function can optimized by itself. And the Matlab simulation result shows that, in the case of meeting the control precision, the control effect of the identifier and the controller are very ideal. Therefore, this method is valuable for practical application of engineering.