绵阳师范学院学报
綿暘師範學院學報
면양사범학원학보
JOURNAL OF MIANYANG NORMAL UNIVERSITY
2015年
8期
44-48
,共5页
贝叶斯网络%模型选择%信息准则%α ﹣ BIC
貝葉斯網絡%模型選擇%信息準則%α ﹣ BIC
패협사망락%모형선택%신식준칙%α ﹣ BIC
Bayesian network%model selection%information criterion%α ﹣ BIC
现有的贝叶斯网络模型选择的各种评价准则中,评价准则最为常用。然而在大样本前提下近似推导得到的准则,在基于小样本条件下进行贝叶斯网络模型选择时,得到的网络过于稀疏,网络连通性不足。而准则在小样本条件下学习贝叶斯网络,选择出的网络往往比较复杂。针对这一情况,本文通过引入调整因子,将与准则的惩罚项进行加权,提出了评价准则,从而提高了小样本情况下贝叶斯网络模型选择的效果。理论分析和实验结果反映了改进的准则的合理性和有效性。
現有的貝葉斯網絡模型選擇的各種評價準則中,評價準則最為常用。然而在大樣本前提下近似推導得到的準則,在基于小樣本條件下進行貝葉斯網絡模型選擇時,得到的網絡過于稀疏,網絡連通性不足。而準則在小樣本條件下學習貝葉斯網絡,選擇齣的網絡往往比較複雜。針對這一情況,本文通過引入調整因子,將與準則的懲罰項進行加權,提齣瞭評價準則,從而提高瞭小樣本情況下貝葉斯網絡模型選擇的效果。理論分析和實驗結果反映瞭改進的準則的閤理性和有效性。
현유적패협사망락모형선택적각충평개준칙중,평개준칙최위상용。연이재대양본전제하근사추도득도적준칙,재기우소양본조건하진행패협사망락모형선택시,득도적망락과우희소,망락련통성불족。이준칙재소양본조건하학습패협사망락,선택출적망락왕왕비교복잡。침대저일정황,본문통과인입조정인자,장여준칙적징벌항진행가권,제출료평개준칙,종이제고료소양본정황하패협사망락모형선택적효과。이론분석화실험결과반영료개진적준칙적합이성화유효성。
TheBⅠC is the most commonly used one among the existing evaluation standards for Bayesian net-work model selection. However,under the Precondition of the large samPle,the BⅠC criterion of aPProximation is obtainedon the basis of the Bayesian networks,which leads to the sParse network and the in sufficient network connectivityunder the condition of the small samPle model,whilethe AⅠC criterion under the condition of the small samPle leads to the comPlicated selection. Ⅰn order to solve this situation,in this PaPer,by introducing the adjust-ment factor,the BⅠC Punishment with the weighted AⅠC criterion,ProPoses the evaluation criterion,so as to im-Prove the small samPle cases,the effect of the Bayesian network model selection. Theoretical analysis and exPeri-mental results reflect the rationality and validity of the imProved criterion.